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Foreword

In compiling this set of notes, I have drawn heavily from materials and re-

sources by Brian Ripley, Jonathan Marchini, James McBrown and many

other references which I am unable to attribute in full. I am however excep-

tionally grateful to Stephen Goss for his suggestions and patient editing.

It should be highlighted that this set of notes serves to provide an easy source

of quick reference, and is by no means comprehensive for all the topics dis-

cussed within. Students are reminded that there is a constant need to refer

to specific references for detailed discussions and expositions of the statistical

and mathematical information.

The advancement of statistics has necessarily resulted in some of the meth-

ods discussed here to be outdated, and more efficient methods is and/or will

be available. However, I have chosen to focus on the fundamentals for each of

the areas discussed, forming the foundations necessarily for further reading

and understanding of any novel or more complex methods. It should how-

ever be reminded also that often, the simplest form of statistics will suffice

in most well-designed studies, and a revision of the study design and data

collected should first occur before the use of more apparently sophisticated

statistical analysis.

Hopefully this set of notes will be sufficiently clear and concise for an under-

standing of basic statistics.
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Chapter 1

Overview of Statistics

In this chapter, we provide a brief overview of statistics in terms of the phases

of statistical analysis and discuss briefly the role of computers in modern sta-

tistical analysis. We shall discuss sample selections and the different types

of data and distributions which physiologists and biologists often encounter.

1.1 A Brief Introduction to Statistics

Statistics plays a very important role in all areas of science. Statistical mod-

els and methods allow us to take samples of data from our area of focus

and answers questions about the population of objects or events that we are

interested in studying.

Before turning to a discussion of the reasons for collecting and analysing

data for a representative sample, we should reiterate the important division

between a population and a sample. The term population means the entire

collection of units or measurements of those units about whom information is

available, or more formally, the set of values for one or more variables taken

by all units. The term sample denotes the subset of the population selected

for study or the values of the variable(s) recorded for those selected units.

An example may be that we can consider the whole faculty of physiology

students to be the population, while a randomly selected group of 10 physi-



ology students will represent a sample of the population.

Usually we are interested in learning about certain attributes or properties

of a population, such as its parameters, structure or distribution. However,

in most cases, we cannot observe a population’s attributes because doing so

would require analysing the whole population, which is generally not pos-

sible. Instead, a sample from the population is selected, and information

are obtained for the samples which may or may not be generalised to the

entire population. For example, to know the mean height of the population

of physiology students, we can either collect the height of all the students, or

we could select a sample and calculate the mean height of the sample. We

could then calculate certain statistics of the sample to provide some infor-

mation about how accurate or precise the mean height of the sample is for

estimating the mean height of the population.

population
about a
Hypothesis

STATISTICS
Study

Design

Propose an

experiment

Take
a

sample

STATISTICAL
TEST

Examine
Results

Figure 1.1: The scientific process and role of statistics.
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1.2 Phases of Statistical Analysis

Initial Data Manipulation

This involves putting the data in the right format to carry out checks of data

quality before commencing any initial analysis of the data. This step is an

important one and should include reviewing the method(s) of data collection

in order to look for possible sources of bias that might invalidate conclusions

drawn from the data, checking for discrepant observations (usually due to

measurement errors or errors in entering the data), and searching for missing

observations.

Exploratory Data Analysis (EDA)

Simple analysis of the data should always be done in order to clarify their

general form, to check for discrepant or extreme observations, to suggest pos-

sible directions for more complicated analysis, and to investigate assumptions

required by the subsequent definitive analysis. Usually, this step involves pro-

ducing tabular, graphical and numerical summaries of the data.

Definitive Analysis

This phase entails using formal and sometimes informal techniques of statisti-

cal inference in order to draw conclusions about certain attributes of interest

for the underlying population.

Presentation of Conclusions

This step involves presenting the graphical and numerical results from above

in an accurate and concise form.

1.3 Role of Computes in Statistical Analysis

Computers can be used in each of the four phases of statistical analysis, as

well as for data collection and entry. More specifically, computers can be

used for data collection, data entry, data checking, data screening, definitive

analysis and presentation of results.
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Using a computer to perform statistical analysis results in numerous advan-

tages, from increased accuracy and speed, to the versatility and ability in

handling large amount of data. Informative graphics can also be produced

easily, and data can be manipulated easily in terms of mathematical opera-

tions and transformations.

There are, unfortunately, disadvantages associated with the use of computers

in statistical analysis. One of the most common problem is that the versa-

tility offered by statistical softwares makes it easy to use an inappropriate

statistical procedure, often when the researcher performing the analyses do

not understand the statistics and rationale behind the analysis. It often leads

to data dredging as well, which refers to the search for significant relation-

ships by performing a large number of analyses, often without a properly

formulated hypothesis.

As a result, caution must be exercised when using computers to perform

statistical analysis. More importantly, before using a statistical software,

one should first understand what needs to be done and whether the software

is performing the relevant analysis. In addition, researchers should guard

against the temptation to produce large amounts of computer output not

required by the planned analysis.

1.4 Sample Selection

In this course, we shall be focusing on data which consists of the values of

p(≥ 1) variables of interest for each of n(≥ 1) units in a representative sam-

ple of the population of interest. This type of data is especially common

in applications such as demographics, medicine, psychology, sociology and

zoology, and it is relatively straightforward to draw inferences about its un-

derlying population. For probabilistic reasons, we will assume throughout

that the underlying population of interest is infinite, unless stated otherwise.

Data can be collected with either of two types of goals in mind:
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Descriptive Inference: when the main objective is to describe a large group,

using information from a sample from that group.

Analytical Inference: when the main objective is to study the properties of

and relationships between variables using a small sample, assuming that the

results from that sample can be generalised to a larger population.

Simple Random Sample

A simple random sample of size n is a subset containing n units from the

population of interest. These units are chosen in such a way that every pos-

sible subset of size n has the same probability of being selected as any other;

equivalently, every unit in the relevant population has the same probability

of being selected for the sample.

Stratified Sampling

Sometimes the population to be sampled is divided into non-overlapping sub-

populations called strata (eg. genotypic data, genetic structures, gender),

across which it is suspected that the answers to the questions of interest

may differ. Sampling can be done by collecting data across the strata in the

population as this improves the precision of our estimates of the parameters

of interest. In this stratified sampling method, the total desired sample size

is divided between the strata in a manner that reflects the properties of the

variables of interest within each stratum. Once the number to be sampled

from each stratum has been determined, the appropriate number of units is

selected randomly from each stratum.

Cluster Sampling

In cluster sampling, the population is again divided into non-overlapping

groups or clusters. However in this case, the groups are not assumed to

differ systematically, but rather each is assumed to be representative of the

entire population. In such situations, only several of these clusters are first

selected and then units are randomly sampled within each cluster to reduce

the amount of data collected. An example of cluster sampling will be if a

researcher hoped to estimate the mean body mass index (BMI) of Oxford
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students, the researcher may assume that all colleges were more or less the

same in this regard, he could select several colleges and then measure the

body mass index for randomly selected students within these colleges only.

To contrast between stratified sampling and cluster sampling, we expect the

parameters of interest to vary maximally across groups and minimally within

groups in stratified sampling while we expect the parameters to vary mini-

mally across groups and maximally within groups in cluster sampling.

Multi-stage Sampling

In some instances there may be several layers of clusters or strata. For ex-

ample, the population of interest could be divided into health districts, each

of which could then be subdivided into its component hospitals. If this was

the case, then multi-stage sampling, in which groups, then subgroups, and

finally units within subgroups are selected, could then be employed. An ex-

ample may be to assume that hospitals in Oxfordshire admit patients with

medical conditions representative of the entire UK population (cluster), and

the focus is on the difference in incidence of diabetes for male and female

patients (strata).

Multi-phase Sampling

Sampling seldom occurs in only one phase, an initial random sample from

the overall population might be used to estimate certain properties of the

variables of interest in each of the strata in that population. The resulting

estimates could be employed in order to determine how the total number of

units that will be sampled in the second phase should be divided amongst

the strata for more in-depth sampling in that phase.

We should note that all of these sampling methods employ random sampling

at some stages, usually at the final stages of sampling. The importance of

choosing units randomly is twofold: it helps to avoid biases, and it is an

explicit assumption of many statistical methods.
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1.5 Types of Variables

There are different types of variables from measurements of variables of in-

terest, which are determined by the set of values that they can take, and

whether they are categorical in nature or numerical. When data for only one

variable is analysed, the analysis is termed univariate, whereas an analysis

that investigates the relationship or association between two or more vari-

ables is termed multivariate.

Nominal - Categorical

Nominal categories refer to data which can take on only a finite set of val-

ues, where these categories or levels have no intrinsic ordering. These are

also commonly referred to as factors. Examples would include gender (male,

female), dichotomous disease status (disease, unaffected), etc.

Ordinal - Categorical

Ordinal categories refer to data that can take on only a finite set of values,

where the categories in this set do have an intrinsic ordering, but often not

on a well-defined scale. An example would be the assessment of the quality

of life: poor, decent, good, excellent.

Interval

This refers to a variable that can take on only a finite set of values, where

the categories in this set have an intrinsic ordering, but also have numerical

scores or labels (eg. quality of life as ranked in increasing scale of 1 - 5).

These labels are often treated as category averages, means, or medians, and

the differences between them can be used as a measure of the separation

between two categories. This type of variable can also result from coarsely

observing a numerical variable, for example when the possible range of values

for a numerical variable is divided into a number of bins and only the bin

location is observed for each unit.

Discrete

Discrete variables take on integer or counting number values which may be
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the number of occurrences of some phenomenon. For example, the number

of children, or the number of lectures attended in one term.

Non-ratio Continuous - Numerical

This refers to numerical variables that take values along a continuous scale.

Variables of this type are fairly common, especially in physiological mea-

sures. However, do note that variables of this type may take values from 0,

and can be allowed to be non-linear. Non-linearity means that the difference

between 5 and 10 may mean differently from the difference between 80 and 85.

Ratio

This refers to a variable that takes on values along a continuous and well-

defined scale. For variables of this type, a difference of one unit has the same

interpretation at any part of the scale, and a value of 0 truly denotes the

absence of the characteristic.

It should be noted that numerical variables on a continuous scale can always

be reduced to interval categorical variables by grouping their values into

bins, and this is often seen in medical research where numeric data is divided

into tertiles (3 groups of approximately equal sizes), quartiles (4 groups) or

quintiles (5 groups) for comparisons, often between the top group with the

bottom group. For example, in genetics research, a possible way to evaluate

the effects of genotypes on quantitative trait loci (QTL) may be to divide the

data into quintiles, where comparison is made between the 1st and 5th quin-

tile, signifying the subjects with the worst and best responses respectively.

1.6 Distributions

The measured values of variables will always vary across members of a popu-

lation, or across members of a sample from that population. The pattern of

occurrence of the various values of a variable is termed its distribution. Pri-

marily, a distribution describes the possible values that a variable can take,

and the relative frequency with which each of these different values occur.
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The distribution of values for all units in the population is termed the popula-

tion distribution, whereas the distribution of values for the units in a selected

sample from the population is termed the empirical distribution. The popu-

lation distribution is usually not known or not observed unlike the empirical

distribution. In most situations, we assume that the empirical distribution

is a good representation of the underlying population distribution.
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Chapter 2

Exploratory Data Analysis

Exploratory data analysis (EDA) can help to reduce the information con-

tained in a data set to a few key indicators that describe or summarise its

main characteristics and therefore provide a better overall picture of the data.

Although some particular features of the data may be lost by summarising

the data, trends or patterns in the data may be revealed which may be rele-

vant to the questions of interest. Certain EDA techniques will also highlight

departures from these trends/patterns in the data set, providing an efficient

graphical method to identify outliers. Outliers can be defined as data points

that deviate remarkably from the majority of the sample. Although outliers

may result from measurement or recording errors, they can also correspond

to anomalous units. Finally EDA provides a graphical method to investigate

the assumptions that are required for statistical inference.

For example, some methods of statistical inference require the assumption

that the population underlying the data for one variable has a normal distri-

bution. A histogram of the observations for the variable can easily provide

graphical evidence of whether this assumption is reasonable.

EDA methods can be tabular, numerical (descriptive statistics) or graphical.

The specific method of appropriate EDA depends on the type of data that

are being investigated (univariate or multivariate, categorical or numeric).



2.1 Tabular EDA Methods

For a nominal or ordinal categorical variable, a frequency table or one-way

table, is a possible way of describing the data. For each category, the table

can show either its absolute frequency (the number of occurrences of the cat-

egory), or its relative frequency (the number of occurrences of the category

divided by the total number of occurrences of all categories). Contingency

tables which are two-way or multi-way frequency tables are useful in de-

scribing the relationship or association between two or more ordinal/nominal

variables.

Marital Status

Education Married Once Married more than once Total

College 550 61 611

No College 681 144 825

Total 1,231 205 1,436

Consider the above example where an absolute frequency table relating num-

ber of marriages and education for a sample of 1,436 married women listed in

Who’s Who in 1949. Note that of the women who went to college, 10% had

been married more than once as compared to 17% for those without college

education. For women married more than once, 30% had a college education

as compared to 45% for women who married only once. The table shows an

association between having a college education and the increase in chances

of being married only once.

2.2 Numerical EDA Methods

Sample Quantiles

Sample quantiles can be used to describe either categorical or continuous

variables. The α-th sample quantile, denoted η(α), is the smallest value such

that (100×α)% of the observations for the variable take values which are less

than or equal to η(α). For example, 5% of the observed values for a given
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variable are smaller than its 5th sample quantile.

An important set of quantiles is the sample quartiles, a set of values that

divides the observed range of a variable into four intervals, each containing

25% of the observations. The sample quartiles are denoted by Q1, Q2 and Q3,

and are referred to as the lower quartile, median, and the upper quartile re-

spectively. The quartiles are often used to calculate the sample inter-quartile

range (IQR), which is defined as the difference between the upper and the

lower quartile (Q3 −Q1).

The sample quartiles are usually combined with the minimum and maximum

value observed in the data, to produce a five-number summary of the dataset.

For example, consider a dataset for the height of 120 randomly chosen male

students from Balliol College, a five number summary for this dataset will

be

Min Q1 Median Q3 Max

0 172 181 188 201

From the five number summary, it seems that there is a problem with the

dataset, as the minimum height registered is zero. This was actually a respon-

dent who failed to provide his height and the data was mistakenly entered as

zero. Without performing this simple check, analysis of the height using the

raw dataset will produce erroneous interpretations. Assuming that the rest

of the four numbers in the table are correct, the IQR for this set of data is

thus 16 = 188− 172.

Location

This property is concerned with finding the position of the value in the

dataset that best characterises it. The sample median, mean, and mode

can all be used. It should however be emphasized that although the mode

has meaning for all the six types of variables, calculation of the median is

only sensible for variables other than nominal, and calculation of the mean

is only possible for variable types other than nominal and ordinal. In par-

ticular, these measures of location are not particular informative when the
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empirical distribution for a given variable is not unimodal (i.e. the frequency

distribution has more than one peak).

The sample median can be calculated by ranking the n observed values of

the variable from smallest to largest where the middle value in this ordered

list will be the median. If n is even, the median will be the average of the

two middle values. The sample median indicates the centre of the empirical

distribution of a given variable in the sense that half of the values are smaller

than or equal to the sample median (and half of them are larger than or equal

to it).

Another measure of location is the sample mode, which is simply the value

of the variable that appears with the highest frequency in the dataset. The

sample mode is however not necessarily unique because two different values

may occur with the same highest frequency. For this reason, the sample

mode is not always a good indicator of location.

The sample mean is the most widely used location measure, and is commonly

denoted as X̄ where

X̄ =
1

n

n
∑

i=1

Xi.

Like the sample median, the sample mean also indicates the centre of the

distribution, but in the sense of a centre of gravity.

Comparing between the sample median and the sample mean, if the empiri-

cal distribution of the variable is symmetric with respect to the mean, then

the median and the mean have the same value. For instance, let us consider

a dataset containing the measurements of length of the forearm (in inches)

for 140 adult males. For this data, the median and the mean are 18.8 and

18.802, reflecting the symmetric nature of the distribution. However, the

sample mean and median are not coincident when the empirical distribution

of the variable is asymmetrical. This is especially true when outliers are

present for a variable, since the sample mean is greatly affected by outliers

whereas the sample median is not. Consider the height example of 120 stu-
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dents, the median is 181 while the mean is 178. This discrepancy occurs due

to the erroneous entry of zero for the student whose height was not reported.

However this error does not affect the sample median because the median

selects only the middle observed value and is thus not affected by outlying

values at either extremes. For this reason, we say that the median exhibits

robustness against outliers, which is often a desirable statistical property, es-

pecially in the case where outliers represent measurement or recording errors.

Spread or Dispersion

The spread or dispersion of a variable measures the degree to which the ob-

served values for that variable are concentrated around a location measure.

The smaller spread indicates that the observed values are more tightly clus-

tered around the centre of the empirical distribution. Measures of spread

include the sample range, the IQR, the sample variance, the sample standard

deviation, and the sample coefficient of variation. As before for sample mean,

it is not possible to calculate these quantities for nominal or ordinal variables.

The simplest measure of spread is the sample range, which is defined as the

difference between the sample maximum and the minimum for a variable.

However, since the sample range depends on only two observations at both

extremes, it is highly sensitive to outliers and may not be a reliable indicator

of spread. A similar measure which is less sensitive to outliers is the IQR,

although if the dataset contains a large proportion of outliers, the IQR may

be similarly unreliable.

Another measure of spread is the sample variance, often denoted by s2 or σ2.

The sample variance is defined mathematically as

s2 =
1

n− 1

n
∑

i=1

(Xi − X̄)2.

Note that the variance is always non-negative, and is zero only if all of the

observed values for a variable are identical (i.e. there is no variation). The

sample variance is expressed in squared units, which can make it a difficult

quantity to interpret intuitively. A common measure of spread is therefore
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the sample standard deviation, often denoted as s or σ, which is defined as

the (positive) square root of the sample variance.

It should be emphasized that the sample range, variance and standard de-

viation depend on the units in which a variable is measured. As a result,

the empirical values of these measures can be misleading when comparisons

are drawn across variables using different units of measurements. For ex-

ample, consider the height example with 119 students (omitting the student

with zero height), the data measures height in centimetres and the standard

deviation is 9.94cm. If the data is instead entered in metres, the standard

deviation will instead be 0.0994m. Comparisons of the two values will not

be meaningful without careful observation of the units of measurements.

The sample coefficient of variation (CV) is another measure of spread which

overcomes the above problem, as it uses the absolute size of the mean to

adjust for the standard deviation. The sample coefficient of variation for a

sample is defined with respect to the standard deviation and the mean as

CV =
s

X̄

This coefficient has no units, which allows us to use it for comparing disper-

sions of variables measured in different units. Note however if the sample

mean for a variable happens to be very near 0, the value of the CV may be

artificially inflated and therefore suggest a greater degree of dispersion than

is actually present.

Consider the example below of a comparison between the sample standard

deviation and coefficient of variation of blood pressure (systolic and diastolic)

for a sample of subjects with hypertension, and suppose we observe the

following values:

Systolic BP Diastolic BP

Mean 140 90

Standard Deviation 10 10

Although the standard deviation is the same for both systolic and diastolic

blood pressure, the dispersion of blood pressure around the mean is clearly
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more spread out for systolic BP than for diastolic BP. This fact is revealed by

the sample coefficients of variations, which are 1/14 and 1/9 for systolic and

diastolic BP respectively, reflecting a greater variability for the latter. This

would not be apparent if comparisons were made using only the standard

deviations.

Skewness

Skewness refers to deviations from symmetry with respect to a location mea-

sure. The quantity, often referred to as b1, is commonly used as a measure

of asymmetry and is represented mathematically by

b1 =

∑n
i=1(Xi − X̄)3

s3
.

The resulting quantity is unit-free. If the distribution of a variable is sym-

metric around its sample mean, then b1 has a value of 0. Positive values of

b1 indicate that the variable is right-skewed (i.e. there is a longer or fatter

tail for values larger than the mean), while a negative value of b1 provides

evidence of a longer or fatter tail for values smaller than the mean (i.e. the

variable is left-skewed).

Kurtosis

Kurtosis denotes the degree of peakedness of the distribution, often as com-

pared to a Normal (Gaussian) distribution. The coefficient of kurtosis, usu-

ally referred as b2, is represented as

b2 =

∑n
i=1(Xi − X̄)4

s4
,

and is always non-negative and unit-free. This coefficient takes the value of 3

for the normal distribution, which is described as mesokurtic. A value of this

coefficient that is smaller than 3 indicates a distribution that is platykurtic

(i.e. a distribution that is less peaked than the normal distribution). For

the flattest (least-peaked) of all distributions, the kurtosis for a uniform

distribution takes a value of 1.8. Conversely, if b2 has a value larger than 3,

then this indicates a distribution that is leptokurtic (i.e. a distribution that

is more peaked).
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Figure 2.1: Graphical depiction of the different kinds of kurtosis. The solid

line is generated using a Normal Distribution.

Covariance and Correlation

The degree of association between two numerical variables can be assessed

using correlation coefficients, for which the Pearson’s correlation coefficient

is the most common.

Consider two numerical variables X and Y , the sample covariance for these

two variables, which is defined as

cov(X, Y ) =
1

n− 1

n
∑

i=1

(Xi − X̄)(Yi − Ȳ ) ,

where Xi and Yi are the observations of variables X and Y for unit i, and

X̄ and Ȳ are the sample means of the variables. The covariance is zero for

variables that are independent, and for dependent random variables, the co-
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variance will be positive, if larger than average values of X occur typically

when Y is above average. On the other hand, the covariance will be negative,

if larger than average values of X occur typically when Y is below average.

In the first case we say that X and Y are positively associated, in the second

case we call them negatively associated.

Consider for instance the height and the weight of a randomly chosen person.

Taller than average people will often also have higher than average weight.

Therefore we can expect that the random variables ”height” and ”weight”

are positively associated. On the other hand, the variables ”age” and ”run-

ning distance in 10 seconds” will usually be negatively associated for adults.

It would be also of interest to find out about the strength of association. Un-

fortunately, a large covariance cannot be interpreted as indicating a strong

relationship. Just as the sample variance and standard deviation are affected

by the units in which a variable is measured, the sample covariance will also

reflect the absolute size of the units of measurements for the two variables.

Pearson’s correlation coefficient, r, removes this dependence on the unit of

measurement by scaling the sample covariance by the product of the sample

standard deviations of X and Y .

r(X, Y ) =
cov(X, Y )

sxsy

The correlation coefficient takes on values between −1 and 1, where if r is

approximately 0, then there is no evidence of linear correlation. On the other

hand, a value of 1 indicates a perfect positive linear association while a value

of -1 indicates a perfect negative linear association. It is essential to remem-

ber that Pearson’s correlation coefficient assesses only the linear association

of two variables, and is not a measure of non-linear relationships.

Pearson’s correlation is not robust to outliers, given the dependence on stan-

dard deviations. A more robust measure of association will be to rank the

values of each variable from smallest to largest (assigning scores from 1 to n

in ascending ranks) for both variables, and calculate the Pearson’s r using
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the ranks from the two variables. If a variable has two identical values the

usual procedure for assigning ranks is to assign the average of the two ranks

to both values. The resulting correlation coefficient is known as Spearman’s

rank correlation coefficient and is robust to outliers.

2.3 Graphical EDA Methods

Graphical methods make it very easy to discover trends and patterns in a

data set, and some of these methods in particular are extremely useful in

identifying outliers, or departures from the trend.

Frequency Plots and True Histograms

It has been noted previously that it is possible to calculate absolute or rel-

ative category frequencies for a variable of the categorical variety, and the

possible continuum of values for the variable when divided into intervals for

variables of the numerical type. Instead of presenting these frequencies in

tabular form, we could plot a frequency chart for the data. These absolute

and relative frequency plots are often referred to as histograms.

Properly defined, a histogram is a bar graph in which each bar corresponds

to a category created by grouping the values of the variable into intervals,

classes, or bins (unless the variable is categorical to begin with), and where

the height of each bar is proportional to the absolute (or relative) frequency

of the corresponding class. It is important to distinguish between a histogram

or frequency plot, and a true histogram. The latter is similar to a frequency

plot, except that in a true histogram, the area of a bar, rather than the

height of a bar, is proportional to the frequency of the interval class. More

specifically, in a true histogram, the area of each bar is equal to the relative

frequency of the interval class to which it corresponds. A frequency plot is

identical to a true histogram only when relative frequencies and bins of equal

length are used for the frequency plot.

For both frequency plots and true histograms, the number of bins used can

greatly affect the appearance of both types of plots, and that the absolute
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Figure 2.2: Histogram of the height distribution for 120 students. The his-

togram in this case is constructed such that the true histogram is identical

to the frequency plot.

frequencies of the Y-axis changes for different number of bins. The more

classes and bins there are, the more details of the data, but the sparser the

counts. If the number of bins is too small the clumping effect will result in

the loss of particular features of the data while using too many intervals or

bins will result in many narrow and unnecessary details which may obscure

the overall picture. Thus there is a trade-off with regards to the choice for

the number of bins or identically, the width of the bins. Do note that differ-

ent statistical packages have different rules in choosing the number of pins

relative to the number of observations.

Histograms can also be influenced by where the breakpoints between interval

classes are located, and by whether a value that occurs at a category break-
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Figure 2.3: Histograms of the height distribution for 1000 students using 4

different number of bins.

point is considered to belong to the bin on the left or the right.

It is important to note that frequency plots and histograms are particularly

useful for getting an idea of the distribution of a variable, and in particular,

where the centre is located, the spread of the data, and whether it is sym-

metric, right or left skewed, and how fat and long the tails are. Histograms

can also indicate whether the data is unimodal or multimodal.

Univariate Boxplots Boxplots are extremely useful graphical devices for

describing interval and numerical variables, which is sometimes also known

as a box-and-whiskers plot. This plot is based on the five number summary

and is particularly useful for identifying outliers and extreme outliers, and

for comparing the distributions of variables within two or more classes. The
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ends of the box are the lower and upper sample quartiles, and thus the

length of the box is the IQR for the variable. The sample median for the

variable is marked by a line inside the box. The lines extending from the

box (the ’whiskers’) extend up to the smallest and largest observation within

the interval (Q1 − 1.5IQR, Q3 +1.5IQR). Points that fall within the interval

(Q1 − 3IQR, Q1 − 1.5IQR) are designated as negative outliers, and points

that fall in the interval (Q3 +1.5IQR, Q3 +3IQR) are designated as positive

outliers. Those points located outside the interval (Q1 − 3IQR, Q3 + 3IQR)

are considered to be extreme outliers.
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Figure 2.4: Boxplot for the height data of 120 students.

There are two outliers at either end for this data set. In addition, we can tell

that the distribution is roughly symmetric since the sample median line is

roughly in the middle of the box and also that the two whiskers are similar

in length.

Multivariate Boxplots

The boxplot can also be used for bivariate analysis in the specific case where

one desires to investigate the association between a categorical variable and a

non-ordinal and non-nominal variable (i.e. an interval or numerical variable).

Boxplots make it easy to compare the distributions of the variables within

each of two or more classes (levels) of the first variable.
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Consider the height example with additional height data for 120 female stu-

dents from Balliol College.

16
0

18
0

20
0

Male Female

Gender

H
ei

gh
t

Figure 2.5: Boxplot for the height data of 240 students, categorised by their

gender.

From the boxplots above, we see graphical evidence suggesting a difference in

the distributions of height for male and female students. The spread seems

similar across the two gender as suggested by the similar widths of the boxes

on either side of the medians.

Scatterplots

The relationship between two numerical variables can be viewed graphically

using a scatterplot. Furthermore, the relationships between two numerical

variables and one categorical variable can be efficiently displayed through the

use of a scatterplot in which different symbols indicate the various levels of

the categorical variable. An important point to note is that the axes should

always be clearly labeled, and if necessary, a legend provided to state the

corresponding symbols for each categorical variable.

As an example, consider the height dataset where 120 male and 120 female

students are sampled from Balliol College, where data on their height and

weight are obtained.

From this figure, we see that in general, there exists linear relationships
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Figure 2.6: Scatterplot for the height and weight data for 120 male and 120

female students.

between height and weight for both males and females, although it seems

graphically that the relationship seems stronger for males than females. It

can be safely concluded that in general, increasing height corresponds to an

increase in weight.

Transformations of Variables

Transforming a variable refers to applying the same mathematical function,

such as ln(x), exp(x), or x2, to all the observed values of a variable. Clearly,

since the levels of categorical variables do not have a strict numerical inter-

pretation, it is not possible or appropriate to apply mathematical transfor-

mations to these variables. For continuous variables, ln(x) is a particularly

common transformation that is often applied to variables that only can or

do take on positive values, such as height and weight.

There are a number of reasons to justify the need for transformations of
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continuous variables. In some cases, there is theoretical motivation for such

a transformation. For example, if we are examining population growth in a

developing country over time, we might want to take the natural logarithm

of the population size since we expect exponential population growth in an

theoretical environment of no population control.
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Figure 2.7: Identification of transformations from scatterplots.

Another possible reason for transforming a continuous variable may be that

the transformations allow the data to satisfy the assumptions required by

statistical inference methods. For instance, many methods of statistical in-

ference assume that the variable of interest has an underlying distribution

that is normal. A normal variable can theoretically take on any value in the

interval (−∞,∞), which is obviously not the case for some variables (such as

population size), that can only take on positive values. Using a logarithmic

transformation will take a number in the interval (0,∞) to another in the

interval (−∞,∞), which may result in a transformed variable for which the

assumption of normality is more reasonable.
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Chapter 3

Overview of Methods of

Statistical Inference

Statistical inference can be divided into three areas: estimation, confidence

intervals and hypothesis tests. These areas however should not be viewed as

independent and isolated applications. In general, statistical inference takes

the sequence of estimation of the attributes of interests to be used to form

confidence intervals, and to perform hypothesis tests for these attributes.

There is also a duality between confidence intervals and hypothesis tests

that will be discussed.

Estimation techniques entail using the data to make a ’best guess’ at the at-

tribute(s) about which we are hoping to draw inference. This sample-based

guess is selected because it is a good representative of the unknown popula-

tion attribute(s) of interest. In general, ’guesses’ or ’estimates’ of underlying

population attribute(s) are accompanied by ”errors”, which are used to give

an indication of the precision and reliability of the estimates.

A confidence area for only one property of interest is referred to as a confi-

dence interval, whereas a confidence area for two or more properties of inter-

est is called a confidence region. The formation of a confidence interval (re-

gion) involves constructing a one-dimensional interval or a multi-dimensional

region that, according to the data, is likely to contain the true unknown val-
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ues of the attribute(s) of interest.

Performing a hypothesis test entails using the data to decide how likely it is

that a certain hypothesis about the underlying property of interest (i.e. the

null hypothesis) is true. More specifically, if the data that we observed in

our sample would be extremely unlikely to occur if the null hypothesis were

true, then we reject that hypothesis.

Generally, the statistical methods of inference introduced above can be di-

vided into two classes: parametric and non-parametric. In parametric infer-

ence, a specific distributional family is assumed for the underlying variable(s)

of interest, and the known statistical / probabilistic properties of that family

are then used to design estimators, confidence intervals, and / or hypothesis

tests. In non-parametric inference, these three entities are designed by em-

ploying various rules of probability, but no specific distributional family is

assumed for the underlying population.

Methods of statistical inference rely on certain assumptions and if the as-

sumptions required by a method are not valid for the population underlying

the particular dataset, then it is possible that the conclusions reached may be

invalid. It is important that the data analyst be aware of these assumptions,

and to verify whether they are valid for the dataset. Assumptions can be

investigated informally through graphical methods, or through formal sta-

tistical tests. For example, most standard statistical inference assumes that

the dataset follows approximately a Normal distribution, and this can be

assessed informally by plotting the histogram, or more formally through a

goodness-of-fit test for a Normal distribution.

3.1 Estimation

Estimation techniques involve using the data to provide a suitable guess at

the population attribute(s) we wish to deduce, and for the purpose of this

course, we shall focus on deducing parameters (point estimation), rather than

structural properties of the variables. Note that a parameter is a numerical
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characteristic of the population of interest, or a numerical function of the

random variable(s) of interest. Examples of parameters which we may be

interested in are population median or mean. An estimator is therefore a

representation of the parameter from the data.

As the estimators are constructed through the use of the data, each estima-

tor will be associated with a degree of precision and reliability, that is often

dependent on the size of the data sample. This degree of precision and reli-

ability is often known as the error of the estimator, and in general we wish

to minimise this error for greater precision in estimation.

We will assume henceforth that the population random variable has a distri-

bution that is symmetric, where the location parameter of interest represents

the ’centre’ of the underlying distribution. Also, we assume that the under-

lying population is virtually infinite and our data sample is always randomly

selected, and of size n.

Definition: A statistic is simply any mathematical function of the data

in a sample, or any mathematical function of the realisations of the random

variables in a sample. A statistic is a random variable as it is constructed

from random variables. Examples of statistics include the sample mean, sam-

ple median, or sample skew.

Definition: An estimator is a statistic that is specifically designed to mea-

sure a particular population parameter. Since estimators are a special case

of statistics, they are also random variables and have associated probability

distributions.

Definition: An estimate is a realisation or value of an estimator that oc-

curs once the sample data is evaluated in the estimator expression.

Note that X̄ denotes the random variable for the sample mean, obtained

from the random variables {X1, X2, . . . , Xn}, while x̄ denotes one realisation

of the sample mean, obtained from the data sample {x1, x2, . . . , xn}. Alter-
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natively, X̄ can be seen to represent all possible values that the realisation x̄

can take.

Common estimates in statistics are the mean and variance of the population,

with the estimator for the population mean being represented by

X̄ =
1

n

n
∑

i=1

Xi ,

and the estimator for the population variance being commonly represented

as

S2 = σ̂2 =
1

n− 1

n
∑

i=1

(Xi − X̄)2.

3.1.1 Sample Distribution of an Estimator

The sampling distribution of a statistic is a probability distribution that de-

scribes the probabilities of the possible values for a specific statistic. The

exact form of the sampling distribution for a given estimator will depend

on the underlying population distribution from which the data were drawn.

In general, knowing the sampling distribution for an estimator is useful and

necessary for constructing confidence intervals and hypothesis testings.

Sampling Distribution of the Mean

To consider the sampling distribution of the sample mean for the variable

X, we assume that X has a N(µ, σ2) distribution [i.e. a Normal distribution

with mean µ and variance σ2].

For a sample of size n (x1, x2, . . . , xn) from a population with mean µ and

variance σ2, the mean of this sample is

x̄ =
1

n

n
∑

i=1

xi.

Suppose a new sample of size n is obtained from the population and the

sample mean calculated, and if this sampling process is repeated until all

possible sample outcomes are accounted for, the sampling set of means for x̄
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yields a probability distribution and this distribution is termed the sampling

distribution of the sample mean, commonly denoted as X̄. It can be shown

easily that X̄ takes the form of N(µ, σ2/n), and this means that the sampling

distribution is distributed symmetrically around the true population mean,

with a spread proportional to σ2/n. As the spread is inversely dependent on

the sample size, the precision of the estimation increases for larger sample

sizes, resulting in the realisations to be more tightly clustered around the

true mean value µ. The standard deviation of X̄ is σ/
√
n, which is referred

to as the standard error of X̄. The variance of X̄ is commonly defined as the

error variance.

The above applies when X is known to have a N(µ, σ2) distribution. When

the underlying population distribution is unknown but symmetric, the Cen-

tral Limit Theorem states that the sampling distribution of X̄ is approxi-

mately the same as the above, provided that the sample size of X values is

sufficiently large.

3.1.2 Central Limit Theorem

Let X be a random variable with mean µ and standard deviation σ (but not

necessarily normally distributed). If X̄ is the mean of a random sample of

size n drawn from the distribution of X, then the distribution of X̄ tends to

a normal distribution with mean µ and standard deviation σ/
√
n, provided

n is sufficiently large.

In general, the sample size required depends on the degree of asymmetry of

the original distribution of X, requiring larger n for greater degree of asym-

metry.

3.1.3 Standard Error and Bias of Estimators

The bias of an estimator is defined as the difference between the expected

value of an estimator and the corresponding population parameter it is de-

signed to estimate. Further, an estimator is said to be unbiased for a param-
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eter, θ, if its expected value is precisely θ.

Unbiasedness is generally a desirable property for an estimator, and often an

estimator for a given population parameter is constructed such that it will

be unbiased. (This explains why the sample variance has a denominator of

n− 1 rather than n).

Note that the bias of an estimator can be calculated analytically or through

simulation techniques. For example, the bias of the sample mean can be

calculated analytically since mathematical calculation and statistical theory

can be used to derive an explicit expression for the expected value of the

sample mean, although simulations may be required to obtain the bias of the

sample median.

In general, the most common measure of the spread or dispersion of a dis-

tribution, relative to its mean, is the standard deviation. However for the

sampling distribution of an estimator, the standard deviation is commonly

referred to as the standard error of the estimator. The standard error is used

as a measure of the precision of the estimator, and depends on the scale or

units of measurement of the variable of interest. It is common to compare

the value of an estimator with that of its standard error, using the ratio

s.e.(θ̂)/θ̂, which is unit free, and is termed the coefficient of variation. In

general, the smaller the coefficient of variation, the more precise the estimate

is.

Compromise Between Standard Error and Bias

Suppose there are two different estimators for the same population parame-

ter. In general, one of the two possible estimators will have a smaller standard

error than the other, and we define the estimator with the smaller standard

error as being more efficient. In addition, we will define an estimator efficient

if it achieves the smallest standard error possible for the estimation of a given

parameter. The smallest possible standard error for an estimator of a certain

parameter can be found using mathematical results such as the Cramer-Rao

lower bound. Greater efficiency is a generally attractive property for an es-
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timator to have since it means that the estimator has a small standard error

and is a more precise estimator for the underlying parameter.

However, unbiasedness is also a desirable property for an estimator to pos-

sess. An unbiased estimator with the smallest standard error is the ideal

estimator but quite frequently no such estimator exists and there may be

trade offs between the bias and variance of the estimators. Often, the bias of

an estimator for some population attribute of interest can only be decreased

at the expense of increasing its standard error. There is no rule to allow us to
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Figure 3.1: Three estimators with different properties.

choose between several estimators for the same population parameter since

in different situations, a different choice of estimator might be preferable. A

balance between bias and variance is the general rule for deciding between

bias and variance in estimators.

As a side note, in addition to an estimator which is unbiased and efficient,

we may also want our estimators to be robust to outliers in the data sample.

For instance, the sample median may be preferable rather than the sample

mean as an estimator for the population mean if the data contain extreme

values, since the median is robust to outliers whereas the mean is not. Note

however that robustness will often come at the expense of higher variances.

Also, it is true in general that the precision of an estimator increases (de-

creasing standard errors) as the sample size increases, or estimators being

more precise when sample size is larger. In fact, having a larger sample is

generally advantageous since large samples allow for detection of very small

differences in means. However there is a need to balance the cost and time
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required to collect a larger sample. There is usually a compromise between

clinical efficiency and statistical efficiency.

3.2 Confidence Intervals

We can define a confidence interval (CI) as a region, constructed under the

assumptions of a model, that contains the true value (the parameter of inter-

est) with a specified probability. This region is constructed using particular

properties of an estimator and is a statement regarding both the accuracy

and precision of this estimate. There are two quantities associated with con-

fidence intervals that we need to define:

Definition: The coverage probability refers to the probability that a pro-

cedure for constructing random regions will produce an interval containing,

or covering, the true value. It is a property of the interval producing proce-

dure, and is independent of the particular sample to which such a procedure

is applied. We can think of this quantity as the probability that the interval

constructed by such a procedure will contain the parameter of interest.

Definition: The interval produced for any particular sample, using a pro-

cedure with coverage probability p, is said to have a confidence level of p.

Note that the confidence level and coverage probability are equivalent before

we have obtained our sample. After the sample has been obtained, the pa-

rameter is either in or not in the interval. Thus we would expect 95% of 95%

CIs that are constructed to cover the true parameter under repeated sam-

pling. It is a common (and natural) mistake, when given a 95% confidence

interval, to interpret it as ”the probability that the parameter lies between x

and y is 0.95”. The correct interpretation requires an inversion of the think-

ing process: instead of focusing on the probability of the parameter being in

the interval, we need to focus on the probability of the interval containing

the parameter. The difference is subtle but important, as parameters are

regarded as fixed, unknown constants, and not random quantities.
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Sample Size and Width of Confidence Intervals

For any given confidence level, an increase in sample size will yield narrower,

or more precise, confidence intervals. One of the reasons is that the length

of a CI depends on the standard error of an appropriate estimator, and the

standard error has an inverse relationship with the sample size, decreasing

as n gets larger. Intuitively, a larger sample will contain more informa-

tion about the population parameter of interest, and therefore result in more

precise estimations. Conversely, for any given sample size, an increase in con-

fidence level will yield wider intervals. Intuitively this is so because a wider

interval will result in greater confidence that the interval contains the true

value. Importantly, there is a trade-off between precision (interval length)

and accuracy (coverage).

3.2.1 One-Sided Confidence Intervals

Two-sided confidence intervals are used when we are interested in inferring

two points between which the population quantity lies, and this is usually the

form of CI constructed. If, however, there are very strong prior knowledge

/ beliefs regarding the process under investigation, we might consider con-

structing a one-sided confidence interval. These CIs are appropriate when

we are interested in either an upper or lower bound for µ, but not both.

Consider the following example:

(Pagano and Gauvreau, 1993) Consider the distribution of haemoglobin levels

for the population of children under the age of 6 years who have been exposed

to high levels of lead. Suppose this population is normally distributed with

mean µ (and standard deviation σ), on which we wish to make inference.

Under usual circumstances, we simply want to locate µ, with the focus of the

inference being ”between which two points does µ lie”. In this circumstance,

a two-sided CI is appropriate.

Suppose however that we have some extra information regarding the process

under investigation. Specifically, suppose it is known that children with lead

poisoning tend to have lower levels of haemoglobin than children who do not.
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We might therefore be interested in an upper bound on µ. Hence we would

construct a one-sided confidence interval for µ of the form (−∞, µU), where

µU denotes the upper bound. Note that we would truncate this interval

below at 0, giving (0, µU), as haemoglobin levels cannot be negative.

3.2.2 Constructing Confidence Intervals

At the introductory level, we consider the confidence intervals for means

of normally distributed populations which require the explicit assumptions

that the data are independent and are approximately normally distributed.

Note that if the assumptions are not satisfied, the procedure is not valid

and should not be used. However, there may be alternative ways to satisfy

such assumptions. For example, a transformation may induce normality in

non-normal data, or taking differences of paired (dependent) data will yield

independent observations.

For notational convenience, we introduce the quantity

α = 1− confidence level

which upon rearranging, we obtain the relationship in its more usual form

confidence level = 1− α.

We will introduce α in a more formal context subsequently when we discuss

hypothesis tests, but in the current context, it defines the probability that

the confidence interval does not contain the true parameter, and is thus a

measure of inaccuracy, or error.

Recall that by the Central Limit Theorem, the sample mean X̄ can be re-

garded as being normally distributed with mean µ and standard deviation
σ
√

n
when n is sufficiently large. We can thus calculate the probability that

X̄ lies within a certain distance of µ (provided σ2, the population variance

is known) by using the standard normal, or Z transform. Although unlikely

in most applications, we assume we know σ2.
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We can look up the value of z for a chosen confidence level of 1 − α (i.e.

z1−α) and construct a confidence interval around the sample mean, by use of

z and the standard error of the mean (s.e. = σ/
√
n), by considering

x̄± z1−α
σ√
n
.

The confidence interval satisfies the expectation of identifying a range with

a probability of 1 − α that it will include the true population mean. For

example, at the 95% level of confidence with z0.95 = 1.96, we can calculate

the 95% confidence interval as

x̄± 1.96
σ√
n
,

where we would expect 95% of the cases where we shall have defined a range

including the true population mean (See later chapter for more details).

Assumptions of Distributions and Variances

The above discussion assumes that we are able to calculate the standard

error of the mean as the standard deviation of the population divided by the

square-root of the sample size (i.e. σ/
√
n). However, most often the standard

deviation of the population σ is unknown, and we must use a best estimate for

it instead. The estimate used is typically S, the standard deviation actually

observed in the sample. This introduces more error, and we must calculate

wider ranges to achieve the same level of confidence. Instead of using the

z-statistic, we use the Student’s t statistic, and we calculate the range as

x̄± t1−α
S√
n
.

Like z, the value of t can be looked up in a table, but the values of t depend

on the sample size. For large sample sizes, t approximates to z, since we

can expect that the standard deviation, S, of a large sample will be a good

estimate of the true standard deviation, σ, of the population. For smaller

samples, t is larger than z, and so we calculate a wider range for our con-

fidence interval than if we had used z. Sample size is indicated in tables of
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t as the number of degrees of freedom (or “df”) where, for a simple set of

observations,

df = n− 1.

Student’s t distribution is symmetric with respect to 0 and has heavier tails

than the standard normal probability density function (pdf). It approaches

the standard normal distribution as the number of degrees of freedom (and

hence sample size) increase.
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Figure 3.2: Student’s t pdfs compared with a standard normal pdf.

3.2.3 Concluding Remarks on Confidence Intervals

Confidence intervals are highly underrated and underused in many areas

of scientific research. However, interval estimation is an important area of

statistical inference, because a random interval simultaneously provides in-

formation regarding both estimate accuracy and precision. It is unfortunate

that, due to ignorance of this area, journals prefer the ubiquitous p-value. A

few important notes:
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1. The interval is random, not the parameter. Thus, we talk about the

probability of the interval containing the parameter, and not the prob-

ability of the parameter lying in the interval.

2. The width of an interval is a measure of precision. The confidence level

of an interval is a measure of accuracy.

3. The width of a CI depends on the size of the estimator’s standard error

(which depends on the sample size), and on the level of confidence we

require (which depends on the sampling distribution of the particular

statistic we use to construct the CI).

4. It is imperative that the required assumptions are satisfied before con-

structing confidence intervals using the formulae described here, as if

the assumptions are not satisfied, different procedures must be used to

construct the intervals.

3.3 Hypothesis Tests

An important area of statistical inference involves using observed data to

decide between competing explanations, or hypotheses, about the process

under investigation. Statisticians refer to this aspect of inference as hypoth-

esis testing. Statistical hypothesis testing is a formal means distinguishing

between probability distributions on the basis of random variables generated

from one of the distributions. The general idea can be written as follows:

Prior to observing the data:

1. State a baseline hypothesis, H0. This hypothesis is usually a statement

of ’no change’, or of maintaining the status quo. Hence this conjecture

is often referred to as the null hypothesis.

2. State an alternative hypothesis, H1. This is typically the hypothesis

of interest to the researcher. That is, it is the hypothesis that the

researcher wishes to demonstrate to be true.

After observing the data:
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1. Decide how likely the observed data is, assuming the null hypothesis

to be true.

2. Reject the null hypothesis in favour of the alternative if there is suffi-

cient evidence to suggest doing so. Otherwise, do not reject the null

hypothesis.

Example: Pregnancy Test Kit

Suppose a woman buys a pregnancy test kit off the counter from a pharmacy.

She is interested to find out whether she is pregnant. The null hypothesis in

this case, the status quo, is that she is not pregnant. The alternative hypoth-

esis, the hypothesis of interest, is that she is pregnant. These hypotheses will

be formulated prior to observing the data or the result.

Upon testing, the pregnancy test kit may show +ve, evidence that the woman

may be pregnant; or -ve, evidence that the woman may not be pregnant. The

degree of belief that the woman has in the pregnancy test kit is dependent on

the sensitivity and specificity of the pregnancy test kit. This is because the

results are seldom definitely correct, and there are associated errors which

need to be understood.

3.3.1 Types of Error

For most simple hypothesis tests, there can be two factual scenarios. The

first scenario is when the null hypothesis is truly correct, while the second

scenario is when the alternative hypothesis is truly correct. As such, there

are in general two types of error associated with simple hypothesis tests.

Type I Error

The null hypothesis may be rejected when it is true. We denote the prob-

ability of committing this type of error by α, and is commonly called the

significance level of the test. In the pregnancy test kit example, a type I

error can be thought of as the probability of obtaining a +ve result when the

woman is in fact not pregnant.
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Type II Error

The null hypothesis may be accepted when it is false. The probability of

committing this error is denoted by β. In the pregnancy test kit example, a

type II error can be thought of as the probability of obtaining a -ve result

when the woman is in fact pregnant.

The probability that the null hypothesis is rejected when it is false is termed

the power of the test, and is equal to 1 − β. The power of a test measures

how sensitive the test is in detecting deviations from the null hypothesis.

Conversely, the specificity measures the rate of true negatives, or the prob-

ability that the null hypothesis is accepted when it is true, and is equal to

1 − α. The following table shows the relationship between the introduced

terms:

H1 actually true H0 actually true

Data supports H1 Sensitivity = 1 - β Type I Error = α

(Power)

Data supports H0 Type II Error = β Specificity = 1 - α

We would like to construct tests with α and β as small as possible. Indeed,

since they are probabilities of error, we would like them to be equal to 0

ideally. However there exists a trade-off between these two quantities, where

in order to decrease α, we must increase β and vice versa. For example,

consider the following example:

A standard test for diabetes is based on glucose levels in the blood after

fasting for a prescribed period. For healthy persons, the mean fasting glucose

level is found to be 5.31 mmol/L with a standard deviation of 0.58 mmol/L.

For untreated diabetes, the mean is 11.74 and the standard deviation is 3.50.

In both groups, the levels appear to be approximately normally distributed.

To operate a simple diagnostic test based on fasting glucose levels, we need

to set a cutoff point C, so that if the patient’s fasting glucose level is at
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least C, we say they have diabetes. If it is lower, we say that they do not

have diabetes. When C is set at 6.5 mmol/L, the sensitivity and specificity is

93.3% and 98.0% respectively, whereas when C is 5.7 mmol/L, the sensitivity

and specificity is 95.8% and 74.9% respectively.
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Figure 3.3: Plot of the distributions for mean fasting glucose.

3.3.2 P-values

The p-value is defined as the smallest value of α for which the null hypoth-

esis would be rejected, given the data. That is, the p-value of a test is the

probability of observing, by chance, a value of the test statistic as extreme

as, or even more extreme than, the one we did observe, assuming that the

null hypothesis was true.

If this probability is extremely small, then either H0 holds and we have ob-

served an extremely rare event; or H0 is false (there is sufficient evidence to

reject H0 in favour of the alternative, H1). Thus, the p-value can be seen as

a measure of the ’risk’ taken when, assuming H0 is true, we decide to reject

this hypothesis. If this ’risk’ is sufficiently small, we can feel confidence that

we are not observing a freak random event; rather, we are observing strong

45



evidence against the null hypothesis. We define sufficiently small to be values

less than the level of significance of the test, α (typically set at 0.05 or 5%).

So the p-value is the probability of obtaining a false positive (i.e. data sup-

port alternative hypothesis when the null hypothesis is actually true). Refer

to table on sensitivity-specificity.

P-values and Confidence Intervals

There is a direct correspondence between hypothesis tests and confidence

intervals. Simply put, a 100(1-α)% confidence interval for a parameter con-

tains all the values of that parameter for which the null hypothesis of a test

would not be rejected at the α level of significance. Therefore, a hypothesis

test can be performed through construction of a confidence interval for the

parameter of interest. If the hypothesized value (under the null hypothesis)

falls in this interval, there is insufficient evidence to reject the null. For ex-

ample, suppose we are interested in testing the null hypothesis that the mean

weight of females in this course is 55kg (i.e. H0 : µ = 55), and the obtained

95% confidence interval from the sample for the mean is (53.4, 58.6), as the

CI contains the hypothesized value, there is insufficient evidence to reject

the null hypothesis. If however, we are testing a null hypothesis that the

mean weight of females is 50kg, then as this value falls outside the CI, we

would reject the null hypothesis in favour of the alternative at 5% level of

significance.

3.3.3 General Approach to Hypothesis Testing

Based on the ideas discussed above, we now describe an approach for con-

structing statistical hypothesis tests. In general, we could consider hypothesis

tests which are either one sided or two sided. For instance, if we are inter-

ested in finding the mean weight of female students in Oxford, we may be

interested in a two sided hypothesis that µ 6= 55. However if we are interested

in finding the glucose level in diabetic subjects, we might be interested in a

one sided hypothesis that µ ≥ 6.5. The usual procedure for the construction

of hypothesis tests can be written as follows:

46



Before data collection/observation:

1. State the hypotheses H0 and H1.

2. Choose and fix the significance level of the test, α.

3. Establish the critical region of the test corresponding to α. This re-

gion depends on the distribution of the test statistic T under the null

hypothesis, and whether the alternative hypothesis is one or two sided.

After data collection/observation:

1. Calculate the value of T from the sample realisation, usually termed t.

2. Compare t with the null distribution of T in order to see whether or

not it falls in the critical (rejection) region, or calculate the p-value

associated with the observed t.

3. Make a decision about the hypotheses.

For example, to test the null hypothesis that a population mean has some

specific value, µ0, we need to see whether µ0 lies within the interval calculated

for the appropriate level of confidence about our sample mean. The direct

way to do this is to calculate how many standard errors of the mean separate

µ0 and the sample mean. We calculate the test statistic T as

T =
x̄− µ0

σ/
√
n

where T is distributed as Z. If T ≥ z0.95, then µ0 lies outside the range in

which 95% of cases should contain the population mean, and we can reject

the null hypothesis, that the population mean is µ0 at a 5% level of signifi-

cance. In particular, if T = z0.98, we can reject the null hypothesis at a 2%

level of significance. (For a worked example, see the following chapter).

However if we do not know σ, we have to estimate the standard error of our

mean as S/
√
n instead. The value T calculated in this case is distributed as

Student’s t, and we must judge our null hypothesis by comparing T with t
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for the appropriate sample size (i.e. for the appropriate number of df).

Note also that the test statistic typically comes in two parts:

1. a numerator which measures the separation between an observed mean

and the value specified by the hypothesis

2. the divisor, which is the standard error of the mean (or our best esti-

mate of the standard error).

3.3.4 Issues on Hypothesis Testing

Multiple Testing

Suppose we are testing a hypothesis regarding many parameters. For ex-

ample, suppose we have data on the effects of four different types of drug

treatments. We might want to test the hypothesis that the effects from all

four treatments is equal, versus the alternative that at least one of the treat-

ment differs from the others.

Suppose we carried out a test at the 0.05 level of significance, and rejected

the null in favour of the alternative. The next step will naturally be to find

out which treatment gives the best effect. In order to do this, we could test

every pair of drug treatment to find which one gives significantly better re-

sults, resulting in 6 pairwise comparisons, and thus 6 tests to perform.

Recall that α is the probability of rejecting the null when it is in fact true.

When we set this probability to, for example, 0.05, we are effectively making

a claim that if the test were to be repeated 20 times, we would expect to

make a type I error on one of the 20 tests. Thus when we use the same data

to perform multiple comparisons (tests), we need to be aware that we are in-

creasing the chance of drawing spurious conclusions, or effectively increasing

the chance of making a type I error.

This problem can be avoided by making each individual comparison more

conservative, i.e. by making the significance level (αind) smaller in order to
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maintain an overall significance level of α. Note that α, the overall signif-

icance level, refers to the probability that at least one of the multiple null

hypotheses tested will be rejected when they are all actually true, whereas

αind refers to the probability that any individual null hypothesis will be re-

jected when it is true. There are many different methods that can be used

to decide on a value of αind, but perhaps the most straightforward and com-

monly used technique is the Bonferroni correction. Simply, if we wish to make

m tests on the same data at an overall significance level of α, we should set

the significance level of each test at

αind =
α

m
.

Data Driven Hypotheses

Another commonly occurring mistake when undertaking hypothesis tests is

to generate hypotheses based on the results of other hypothesis test on the

same data. Such situations arise as follows. Suppose that before data col-

lection, the alternative hypothesis was two-sided. After data collection and

analysis, the p-value was found to be 0.08 (for example). This is larger than

0.05, and so we cannot reject the null hypothesis at the 0.05 level of sig-

nificance. However, we know that if we had chosen a one-sided alternative

hypothesis, the p-value would have been half that observed under the two-

sided alternative, and thus giving a significant result. We therefore construct

another (one-sided) test and obtain a significant result.

Unfortunately this should not be performed since it violates the principles

of the hypothesis test, where the hypotheses were to be specified before ob-

serving the data. Strictly defined, this is considered a problem of multiple

comparison as well.

It is therefore essential to note that hypotheses are always specified prior to

observing the data. If a particular test reveals something interesting about

the process under investigation, and hence generates another hypothesis,

ideally another experiment should be conducted to test this subsequent hy-

pothesis.
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Parametric and Non-Parametric Tests

A parametric test requires that precise assumptions about the population

distribution of the quantity of interest be satisfied in order to use it, whereas

non-parametric tests do not require any assumptions. The nomenclature

can be misleading, since both classes of tests refer to parameters. Usually

non-parametric tests are applied to parameters such as the median, which

although they are parameters in the broad sense of the term, they do not in

general define a distribution, as compared to parameters such as the mean

or the variance which often characterise a distribution.

Whenever possible, parametric tests are preferred because, as long as the

assumptions required by the parametric tests are satisfied, parametric tests

have a larger power than non-parametric analogues.
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Chapter 4

Revision on Z-tests and t-Tests

Commonly, when we are interested in investigating the properties of contin-

uous variables, we will usually be interested in making inferences about the

population mean. The assumption of known variance is usually not fulfilled

in practical applications, although in most situations, the test will assume

that the underlying distribution of the variable is normal, or that the sample

size is large for either a Student’s t-distribution or Normal approximation to

be appropriate.

4.1 Single Sample Test for Population Mean

Normality assumed with known variance

Consider the following hypothetical situation: From previous experience we

know that the birth weights of babies in England are normally distributed

with a mean of 3000g and a standard deviation of 500g. We think that the

babies in Australia have a mean birth weight greater than 3000g and we

would like to test this hypothesis.

Intuitively we know how to go about testing our hypothesis. We need to take

a sample of babies from Australia, measure their birth weights and see if the

sample mean is significantly larger than 3000g. More formally, we start by

writing down our two competing hypotheses.
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The main hypothesis that we are most interested in is the research hy-

pothesis, denoted H1, that the mean birth weight of Australian babies is

greater than 3000g.

The other hypothesis is the null hypothesis, denoted H0, that the mean

birth weight is equal to 3000g.

We can write this compactly as

H0 : µ = 3000

H1 : µ > 3000

The null hypothesis is written first followed by the research hypothesis. The

research hypothesis is often called the alternative hypothesis even though

it is often the first hypothesis we think of.

Normally, we start with the research hypothesis and set up the null hypoth-

esis to be directly counter to what we hope to show. We then try to show

that, in light of our collected data, that the null hypothesis is false. The idea

behind this approach is that we can never use a sample of data to prove a hy-

pothesis is true but we can use a sample of data to prove a hypothesis is false.

Once we have set up our null and alternative hypothesis we can collect a

sample of data. For example, we can imagine we collected the birth weights

of 44 Australian babies, with a sample mean birth weight of x̄ = 3275.955.

We now want to calculate the probability of obtaining a sample with mean

as large as 3275.955 under the assumption of the null hypothesis H0. To

this we need to calculate the distribution of the mean of 44 values from a

N(3000, 5002) distribution.

We know that ifX1, X2, . . . , Xn are n independent and identically distributed

random variables from a N(µ, σ2) distribution, then

X̄ ∼ N
(

µ,
σ2

n

)

.
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Now we can calculate a test statistic T for the null hypothesis that the mean

weight of Aussie babies is 3000g using the formula on page 46,

T =
x̄− µ0

σ/
√
n

=
3275.995− 3000

500/
√
44

= 3.66

which corresponds to the z-value for 99.985%. The probability that we could

observe a mean of 3275.995g in a sample of 44 babies if the true Australian

population mean was only 3000g is only 1 - 0.99985 = 0.00015.

The obtained p-value of 0.00015 is very low, implying a very low probability

of the data if we assume the null hypothesis to be true.

The convention within statistics is to choose a level of significance before the

experiment that dictates how low the p-value should be before we reject the

null hypothesis. In practice, many people use a significance level of 5% and

conclude that there is significant evidence against the null hypothesis if the

p-value is less than or equal to 0.05. A more conservative approach uses a

1% significance level and conclude that there is significant evidence against

the null hypothesis if the p-value is less than 0.01.

In our current example, the p-value is 0.00015 which is much lower than 0.05.

In this case we would conclude that

“there is significant evidence against the null hypothesis at the 5% level”

Another way of saying this is that

“we reject the null hypothesis at the 5% level”

If the p-value for the test is much larger, say 0.32, then we would conclude

that

“the evidence against the null hypothesis is not significant at the 5% level”

or
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“we cannot reject the null hypothesis at the 5% level”.

Normality assumed with unknown variance

There are certain assumptions which must be satisfied for the use of the

Z-test in hypothesis testing, essentially that of either known population

variance and large sample sizes. If however the population variance is un-

known, and the sample size is insufficiently large, we can use the Student’s

t-distribution to obtain the critical regions or p-values instead of the normal

distribution, provided the distribution of the sample data is sufficiently nor-

mal.

Suppose that X1, X2, . . . , Xn is a sample of n observations of a random vari-

able that is distributed asN(µ, σ2), with σ2 unknown. To test the hypotheses

H0 : µ = µ0

H1 : µ 6= µ0

where H1 may be a one- or two-sided alternative, the optimum test statistic

is

T =
X̄ − µ0

S/
√
n

where S is the square root of the sample variance. Under H0, the statistic T

has a Student’s t-distribution with n− 1 degrees of freedom.

Example: Consider the measurements of heights (in mm) of the ramus bone

for a sample of 20 boys aged 8.5 years. The data are:

45.3, 46.8, 47.0, 47.3, 47.5, 47.6, 47.7, 48.5, 48.8, 48.9, 49.2, 50.0, 50.4, 50.8,

51.4, 51.7, 52.8, 53.0, 53.2, 54.6

We assume that these heights come from a normally distributed population,

as linear biological measures often do (we could investigate this assumption

using histograms / qq plots, or a formal goodness of fit test). However, we

do not know the population variance.

54



Suppose that we are interested in testing the null hypothesis that the popu-

lation mean is equal to 50mm against the alternative that it is not. That is,

we want to test

H0 : µ = 50

H1 : µ 6= 50

at the α = 0.05 level of significance.

For the data, we have that x̄ = 49.63, s = 2.54 and s.e.(X̄) = 0.568. The

observed value of T is t = −0.664, and we can compare this value with a

Student’s t-distribution with n− 1 = 19 degrees of freedom.

Note that, since the alternative is two-sided, the critical region for this test

will consist of two parts, each with α/2 of probability. This region consists

of values of T below -2.09 and above 2.09. These values were obtained using

statistical tables for the Student’s t-distribution, or could alternatively be

obtained using SPSS.

Since t does not fall into the critical region, we conclude that there is in-

sufficient evidence to reject H0 at a significance level of 0.05. The p-value

for this test is 0.516. Note that, if our alternative had been one-sided (i.e.

µ < 50), then our p-value would have been half that (i.e. 0.258), and the

critical region would have included only points below -1.73 as this is the value

which accumulate 0.05 of probability under a t19 distribution respectively.

4.2 Independent Two Sample Tests for Means

4.2.1 Variances known

Suppose our research hypothesis is that the mean birth weight of boys is

greater than the mean birth weight of girls. Suppose we know that the stan-

dard deviation of boys weights is 500g and the standard deviation of girls

weights is 400g. We want to test our research hypothesis using a significance
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level of 5%.

Consider the following steps:

Step 1 Our research / alternative hypothesis can be written as

H1 : µboys > µgirls

and we set our level of significance to be 5%. This dictates that we will carry

out a one-tailed test.

Step 2 We set up our null hypothesis to be directly counter to our research

hypothesis

H0 : µboys = µgirls

Step 3 In this example we will assume that we collected data from Aus-

tralian babies, and we have nboys = 26 boys and ngirls = 18 girls.

Step 4We base our test statistic on the difference between the sample means

of the boys and girls. Under the null hypothesis, we know that

X̄boys ∼ N
(

µ,
5002

26

)

X̄girls ∼ N
(

µ,
4002

18

)

We need to test H0, which is X̄boys − X̄girls = 0. We need to calculate a test

statistic to compare the difference of the two means with 0. It can be shown

that the standard error for the difference of the two means is
√

s.e.2boys + s.e.2girls.

Therefore under the null hypothesis, we know that

X̄boys − X̄girls ∼ N
(

0,
5002

26
+

4002

18

)

Thus we can construct a test statistic as

Z =
X̄boys − X̄girls
√

5002

26
+ 4002

18

∼ N(0, 1)
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Suppose we have x̄boys = 3375.308 and x̄girls = 3132.444, we obtain Z =

1.785.

In general, to test for a difference between two means (with σ1 and σ2 known)

from n1 and n2 observations from two groups, under a null that the difference

is µ0, we use the test statistic

Z =
X̄1 − X̄2 − µ0
√

σ2

1

n1

+
σ2

2

n2

∼ N(0, 1).

4.2.2 Variances unknown

Suppose we have two independent samples of sizes n1 and n2. Further, sup-

pose each sample is from normally distributed random variables X1 and X2.

Consider a null hypothesis that the difference in the variables means is µ0.

Often µ0 is often 0 in practice (test of no difference between the two popu-

lation means). For this test, we use the statistic

T =
X̄1 − X̄2 − µ0

s.e.(X̄1 − X̄2)

There is a need to distinguish between situations where the samples share

a common variance and situations where they do not. The formulae for the

standard error of the difference of the means, as well as the degrees of free-

dom for the null distribution of T are different depending which of these

situations holds.

Equal Variances

Assume that both samples have equal (unknown) variances. In this case, the

estimated value of the quantity in the denominator of T is

s.e.(X̄1 − X̄2) =

√

(n1 + n2)[(n1 − 1)s21 + (n2 − 1)s22]

n1n2(n1 + n2 − 2)

where σ2
1 and σ2

2 are the unbiased estimates for the variances in each sam-

ple. The null distribution of T then follows a Student’s t-distribution with

(n1 + n2 − 2) degrees of freedom.
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Unequal Variances

If the variances of the two samples are different, we need to use a different

estimated standard error of the mean and to calculate the degrees of freedom

using an approximation. In this situation, the estimated standard error of

the mean is

s.e.(X̄1 − X̄2) =

√

s21
n1

+
s22
n2

and the degrees of freedom may be approximated by

df =
(n1 + n2 − 2)2

s2
1

n1(n1−1)
+

s2
2

n2(n2−1)

.

4.3 Paired Two-Sample Tests

In certain situations we might be interested in comparing the effect of a par-

ticular treatment on pairs of observations. These pairs can either come from

the same individual measured before and after the treatment (self-pairing) or

from pairs of similar individuals (e.g. pairs of patients of the same sex, age,

etc.) given different treatments. Pairing is used in an attempt to make com-

parisons between treatments more accurate. It does this by making members

of any pair as similar as possible in all areas except treatment category. Thus,

any difference we do see can be attributed (in theory) to treatment effects.

Denote the paired sample as (Xi, Yi), i = 1, 2, . . . , n. We assume that each

pair element is individually normally distributed with means µX and µY re-

spectively, and unknown variances. The null hypothesis is µX − µY = µ0,

against a one-sided or two-sided alternative. Note that the value µ0 is the

hypothesized mean (population) difference between treatments. Often, the

researcher will be interested in testing the hypothesis that µ0 = 0 (the hy-

pothesis that there is no difference between treatments).

Note that paired data are statistically dependent, and thus violate the as-

sumption of independence. In order to remove this dependency, we take

pairwise differences, and use these differences as the data sample. Thus, let

58



Di = Xi − Yi (i.e. the difference for the ith pair). The statistic for this test

is then

T =
D̄ − µ0

s.e.(D̄)

where D̄ is the mean of the differences and its estimated standard error is

given by

s.e.(D̄) =
s.d.(D)√

n
=

1√
n

√

∑n
i=1(Di − D̄)2

n− 1
.

The null distribution of T is a Student’s t-distribution with n − 1 degrees

of freedom. If the sample size is large, the approximate validity of the test

follows from the Central Limit Theorem (even if the underlying distribution

is not normal) and the normal distribution may be used as an approximation.

4.4 Tests for the Population Proportion

4.4.1 One Sample Test

Often, hypotheses may be formulated to test the population proportion

of ’success’ events. Such formulations are usually warranted in situations

where dichotomous outcomes (’success’ and ’failure’) are possible, and the

researcher is interested to know the proportion of ’success’ events. Occa-

sionally, the researcher will consider one of the possible values of p to be of

special interest. In such cases, the researcher can perform a hypothesis test

with the null hypothesis stating that p equals the special value of interest, p0.

First, we should note that, in this special case, when there are only two

possible outcomes, e.g. ’success’ or ’failure’, then the mean proportion of

occurrence of success, p, has a standard error of
√

p(1− p)

n
.

The proportion of successes in the sample of n trials, p̂ = x
n
, is the point

estimate of the proportion of successes in the population. Formulate the

hypothesis as

H0 : p = p0 vs. H1
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where H1 is a one- or two-sided alternative. The optimum test statistic is

T =
P̂ − p0

√

p0(1−p0)
n

For large values of n and under H0, T follows an approximate normal distri-

bution.

Note that the variance for hypothesis testing of population proportion, p0(1−p0)
n

is different from that used for constructing confidence intervals of the pop-

ulation proportion, p̂(1−p̂)
n

. In hypothesis testing, we have the hypothesized

population proportion p0, and hence the variance must be constructed from

p0. In constructing confidence intervals for p, we do not know the population

proportion and hence p is estimated by the unbiased estimate p̂.

4.4.2 Two Sample Tests of Proportions

In certain situations, instead of comparing population means of two samples,

we are interested in comparing the proportions of specific events within each

sample or strata. This is equivalent to finding the magnitude of p1−p2, where

pi indicates the proportion for population i. However, in comparisons of pro-

portions, there are a few possible scenarios in which we have to differentiate

between:

1. Difference in proportion from independent samples.

2. Difference in proportion for several response categories from a single

sample.

3. Difference in proportion for different dichotomous responses from a

single sample.

The general test statistic in testing for differences in population proportions

is given by

T =
(p̂1 − p̂2)− (p1 − p2)

s.e.(p1 − p2)
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where in testing for no difference in population proportion, the second term

in the numerator equals 0. Under the null hypothesis, T follows an approx-

imate normal distribution. However it is important to note the following

different standard errors for different scenarios. We will briefly mention each

scenario in turn.

Proportions from Independent Samples

This scenario is most commonly seen in estimating the response rates for the

same categorical variable/question across different strata/population.

For example, comparing the difference in proportions of patients recovered

after receiving a homogenous drug treatment in Oxford and Abingdon. So

we assume that the proportion of recovered patients in Oxford p1 is indepen-

dent from the proportion of recovered patients in Abingdon p2.

Suppose sampling is performed with n1 and n2 patients sampled from Oxford

and Abingdon respectively, and with corresponding sample proportions of p̂1

and p̂2 of patients recovering correspondingly.

The standard error of p1 − p2 is thus

s.e.(p1 − p2) =

√

p̂1(1− p̂1)

n1

+
p̂1(1− p̂1)

n1

Proportions from Single Sample with Multiple Responses

This is most commonly seen in situations where a single categorical variable

can choose from more than two responses, and estimation of proportions are

within the same sample. An easy way to recognize this scenario is that the

summation of all the response proportions must be equal to unity.

For example, 200 patients from a hospital in Oxford is randomly sampled

and asked to rate the service standards of the hospital staff, with 4 possible

ratings, ”Very poor”, ”Moderately poor”, ”Moderately good”, ”Very good”.

61



Suppose the collated results are correspondingly 12, 44, 68 and 76, hence

yielding the proportion of 0.06, 0.22, 0.34 and 0.38. Testing for difference

in the response proportions for category i and j, pi − pj, will not be a test

between two independent samples, since there is only one sample in consider-

ation. Hence the previous formulation will not be applicable. The standard

error has to capture the additional information that the two categories are

obtained from the same sample and that there is a certain level of dependence

between the two proportions pi and pj (since when one changes, there is a

likelihood that the other will change correspondingly since the summation of

the proportions equal unity).

The standard error of p1 − p2 is thus

s.e.(p1 − p2) =

√

p̂1 + p̂2 − (p̂1 − p̂2)2

n

Proportions from Single Sample with Dichotomous Responses to

Multiple Factors

This is most commonly observed in situations where the same sample is re-

quired to assess the outcome of many dichotomous responses. A feature of

this form of testing is that there are multiple questions for a single sample,

and that each question has only two possible outcomes.

For example, 200 students from the cohort of students taking a course are

randomly sampled to answer a few questions, with only 2 possible responses

of either ”yes” or ”no” to choose from. The questions include

1. Do you enjoy the lectures?

2. Do you find the content easy?

3. Do you find the lecturer is going too slowly?

Out of the 200 responses, 180 answered yes to the first question, 170 answered

yes to the second question and 120 answered yes to the third question. So
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the sample proportions of the students who answered ”yes” for questions 1, 2

and 3 are thus 0.90, 0.85 and 0.60. Thus we can establish unbiased estimates

of pi, i = 1, 2, 3 as p̂1 = 0.90 and hence q̂1 = 0.10, p̂2 = 0.85 and q̂2 = 0.15,

and finally p̂3 = 0.60 leading to q̂3 = 0.40. In testing for the difference in

proportions of students who answered ”yes” for question 1 and 2, we need

to capture the interdependence between the questions in that we are testing

within the same sample.

The standard error of p1 − p2 is thus

s.e.(p1 − p2) =

√

min(p̂1 + p̂2, q̂1 + q̂2)− (p̂1 − p̂2)2

n

63



Chapter 5

ANOVA and Chi-Square Tests

In the previous chapter we have discussed parametric tests for testing the

differences of means between two populations. It is possible to generalise

the analysis for comparing the means from two independent, normally dis-

tributed populations, to comparing the means from more than two inde-

pendent populations. Also we extend our repertoire of statistical tests by

studying chi-square tests, which allow us to test whether a sample of data is

consistent with a specific theoretical distribution, and also allow us to test for

an association between two categorical variables. Such tests of associations

are extremely useful and very common in both Physiology, Psychology and

Human Sciences.

5.1 Analysis of Variance

Analysis of variance, or commonly known as ANOVA, at its simplest level al-

low for a comparisons of the means of two or more independent populations.

The technique compares these means by examining certain components of

variance, and hence the name.

Consider the following situation: Suppose we have random samples from each

of k normally distributed populations. We write the null hypothesis that all

the means are equal (of homogeneity of means) as

H0 : µ1 = µ2 = · · · = µk
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This hypothesis is tested against the general alternative that at least one

of the population means is different from the others. Note that the preced-

ing statement defines several alternative hypotheses. For instance, suppose

that we are analysing 3 samples. It may be that only one of the means is

different while the other two means might be equal (and therefore form a

homogeneous group). Additionally, we would also want to reject H0 if the

three means were all different from each other. If we do not reject the null

hypothesis, we simply conclude that there are no differences between the

means. If we do reject the null, we must still explore the possible patterns

that led to this rejection. This exploration is known as post-hoc analysis and

will be discussed later.

The basic idea underlying ANOVA relies on an important theorem in math-

ematical statistics which states that the total variance of the pooled sample

can be divided into two components: the within groups variance and the

between groups variance.

The within groups variance is simply the sum of the variances calculated for

each individual group. The between groups variance is the variance obtained

using the means of each group as data. The within groups variance represents

the internal variability of the groups; the between groups variance measures

how well separated these groups are. If the groups are well separated from

each other, the ratio of between group variance to within group variance

should be large. In order to decide how large the value of this ratio should

be in order to be considered significant, we use the F distribution. The de-

grees of freedom are (k−1) for between groups variance, and (n−k) for within

groups variance, where n is the total sample size and k the number of groups.

Note that the two-sample t-test (with equal variance) is a particular case

of ANOVA (with k = 2). Thus, we would expect that the assumptions of

normality and homogeneity of variance (required by the t-test) are also re-

quired for comparing k independent samples, and we should test that these

assumptions are satisfied before commencing on any analysis.
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Example: Consider the following example, where we are interested to com-

pare the means of the daily consumption of the anti-psychotic drug clozapine

(CPZ) for subjects of the 3 different genotypes for the dopa-responsive gene

(DRD). This is a typical example where we are comparing the means of three

groups for differences, with the null hypothesis of no differences between all

three groups. SPSS produces the following output (Fig. 5.1), with a p-value

of 0.420, indicating no evidence to reject the null hypothesis. Therefore we

conclude that there is no difference in the daily intake of CPZ for the three

genotype groups.

ANOVA

Daily CPZ equivalent(Mg)

590721.4 2 295360.724 .869 .420

1.17E+08 343 340020.766

1.17E+08 345

Between Groups

Within Groups

Total

Sum of

Squares df Mean Square F Sig.

Figure 5.1: One-way ANOVA of the daily consumption of CPZ for the 3

different genotype groups.

Non-parametric Approach

When using the ANOVA procedure, we assume that the data from each group

follow a normal distribution and that the groups we are comparing have ho-

mogeneous variances. If the variances are not all equal, then the conclusions

about the group means drawn from ANOVA analysis may not be valid since

the observed ANOVA p-value will be smaller than the one we would have

obtained if the assumption of equal variance was satisfied. This means that

ANOVA will yield an anti-conservative p-value (that is, an increase in the

probability of Type I error) if the homogeneity of variances is not satisfied.

Therefore, it is important to test, either formally or informally, that the ho-

mogeneity of variance assumption is satisfied, as has been stated before.

If this assumption does not appear to be satisfied, transforming the data
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(perhaps using a logarithmic transformation) can sometimes help, as we will

see in the Post-hoc analysis section below. In addition to homogenising the

variances, using a transformation may sometimes induce approximate nor-

mality in the data.

However, if we cannot find a transformation that appears to homogenise

the variance or normalise the variables, then we should consider using a

non-parametric test. Non-parametric tests do not require specific assump-

tions regarding the distribution of the underlying population, and the non-

parametric analogue of the independent two-sample t-test is the Mann-

Whitney test. The non-parametric equivalent of ANOVA is the Kruskal-

Wallis test, which is a generalisation of the Mann-Whitney test for more

than two groups. For both the general test and its two-sample version, the

null hypothesis is that themedians are equal, against the general alternative

that at least one differs from the others. Note that it makes sense to compare

the medians, rather than the means, because if the data are skewed, as they

probably would be if we are using a non-parametric test, then the value of

the mean will be either artificially inflated or deflated. The Mann-Whitney

and the Kruskal-Wallis tests test this null hypothesis by transforming the

data into pooled ranks (i.e. they start by assigning rank 1 to the smallest

observation in the pooled sample, and so on) and then calculating a test

statistic from these ranks. Both tests appear in the non-parametric submenu

of SPSS.

5.1.1 Post-Hoc Analysis

In the use of ANOVA or the Kruskal-Wallis test, when we investigate how the

centre of the continuous variable changes across the k groups, our initial null

hypothesis is that the population means (or medians) are all homogenous. If

we fail to reject this hypothesis, the analysis ends there. If we do reject the

initial null hypothesis, then we will have to establish the reason(s) for doing

so. For example, it may be that only one group mean differs from the rest, or

that there is a particular pattern in which the groups appear to be separated.
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One way of finding significant differences between the means is to make

all possible pairwise comparisons (i.e. test if each pair of means is equal).

Note that we can use either the two-sample t-tests to make these pairwise

comparisons if we assume that the populations are normal, or the Mann-

Whitney test to make these pairwise comparisons. In either case, making

these pairwise comparisons leads to the problem of multiple comparisons, as

we saw in Chapter 3. As before, one way to ensure an overall significance

level of α is to use the Bonferroni correction, whereby each individual test is

conducted at the

α∗ =
α

k(k−1)
2

level of significance. Note that k(k−1)
2

is the number of possible pairwise

comparisons between k groups. There are other techniques for adjusting the

significance level used for multiple comparisons, and statistical software such

as SPSS gives several possibilities, including some which correct for unequal

population variances. We will only concentrate on Bonferroni correction in

these notes.

Example: Cesare et al (1990) conducted a role-play experiment of the effect

of physical disabilities on interviewer ratings. There were 14 assessments by

different ’interviewers’ for each of the 5 groups, control and four types of

disability (Amputee-, Crutches-, Hearing-, Wheelchair-disability). This is an

example of a comparison of the means scores with several groups (k = 5

here). The p-value obtained after performing an ANOVA is 0.027, which

implies that there is evidence to suggest that the means are not all equal.

In order to investigate the patterns in the means, we perform a post-hoc

analysis using the Tukey correction (another method for correction) to adjust

for multiple comparisons. Figure 5.2 shows the confidence intervals after

performing all possible pairwise comparisons, and it was found that there

exists statistical evidence that the means for the groups Crutches and Hearing

are significantly different, while there is no evidence to suggest that the other

pairwise comparisons of means are significantly different. Therefore the p-

significant value (of 0.027) for the ANOVA can be attributed mainly to the
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NONE−AMPUTEE
NONE−CRUTCHES

NONE−HEARING
NONE−WHEELCHAIR

AMPUTEE−CRUTCHES
AMPUTEE−HEARING

AMPUTEE−WHEELCHAIR
CRUTCHES−HEARING

CRUTCHES−WHEELCHAIR
HEARING−WHEELCHAIR

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
simultaneous  95 % confidence limits, Tukey method

response variable: score

Figure 5.2: Pairwise comparisons of means using Tukey correction for mul-

tiple comparisons.

difference in means between the groups Crutches and Hearing.

5.2 Categorical Variable

Suppose now that the variable whose properties we hope to investigate is

categorical rather than continuous. Further, suppose this variable has K

(mutually exclusive) categories (i.e. each unit in the underlying population

falls into exactly one of the K categories) and that we have a random sample

of n units. In this case, we are not interested in the variable’s mean, since

the mean is not defined for ordinal and nominal variables. Instead we are

interested in testing the null hypothesis that the proportions of the popu-

lation in the K categories are π1, . . . , πK respectively, where the πi sums to

one. Often we will be interested in the particular hypothesis that the πi’s are

equal (i.e. πi = 1/K). However, it should be noted that the test presented

below is quite general and does not simply apply to testing the equality of

category proportions for a single categorical variable.

If we let πi represent the hypothesized proportion of units falling into the

ith category, we would expect Ei = nπi occurrences of the objects in the ith

category if the null hypothesis were true. Letting Oi denote the observed

number of units (out of n) in the ith category, the following test statistic

measures how far the hypothesized (expected) data is from the observed

data. Intuitively, if this value is large, there is evidence against the null
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hypothesis whereas if this value is small, the information contained in the

sample provides little evidence against the null. The test statistic is

χ2 =
K
∑

i=1

(Oi − Ei)
2

Ei

,

which, under the null hypothesis, has a Chi-squared distribution with K − 1

degrees of freedom. Therefore, the rejection region for this test consists of

all values that are greater than the (1 − α) quantile of the distribution, for

an appropriate choice of α. The quantiles of the χ2 distribution (with the

appropriate number of degrees of freedom) can be easily calculated in the

majority of statistical software packages or found in χ2 tables in most statis-

tics texts.

Example: Suppose we wish to test whether there is a seasonal effect of the

number of births in Oxford, and we observe 1361 births in total, 334 of which

were in spring, 372 in summer, 327 in autumn, and 328 in winter. If we let πi

be the proportions of births in each of the four seasons, then our hypothesis

is

H0 : π1 = π2 = π3 = π4 = 0.25

H1 : at least one proportion is different

Consider the following table to see how the test works:

Spring Summer Autumn Winter

Observed 334 372 327 328

Expected 340.25 340.25 340.25 340.25

Obs-Exp2/Exp 0.11 2.96 0.52 0.44

The observed value of the test statistic is 4.03, with 3 degrees of freedom.

The rejection region, at the 0.05 level of significance, are values of the χ2

statistic that are greater than χ2
0.05,3 = 7.82. Hence, we would not reject the

null hypothesis, or we conclude that there is insufficient evidence to suggest

a seasonal effect on the birth rate.
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5.2.1 Binary Response with Categorical Predictor

Suppose we have K populations from which we have taken samples of size

n1, n2, . . . , nK respectively. In addition, suppose that each of the K popula-

tions can be further divided into a ’success’ category and a ’failure’ category.

Alternatively, we could describe this situation by saying that we have a cat-

egorical predictor variable with K levels and a binary (1 = success, 0 =

failure) response variable. We are normally interested in testing whether the

true population proportions of success in the K groups are equal to some hy-

pothesized values p1, . . . , pK , where each pi is between 0 and 1. Frequently,

the researcher may be interested in testing whether the probability of suc-

cess is the same in each of the populations, in which case the K hypothesized

proportions would all be equal. (i.e. p1 = p2 = · · · = pK = p, for some p

between 0 and 1). However, this is not the only null hypothesis that can be

investigated using the following test.

If the null hypothesis were true, then we would expect Ei = nipi successes

in the ith sample for i = 1, . . . , K. Let Oi denote the observed number of

successes in the ith sample. To use these observed and expected frequencies

to test the general null hypothesis specified above against an appropriate al-

ternative, we employ the χ2 test statistic, since it measures in some sense, the

distance between the observed and expected category frequencies. However,

in this situation, the test statistic has a χ2 distribution with K, rather than

K − 1 degrees of freedom under the null hypothesis.

5.2.2 Goodness-of-Fit Tests

Instead of testing hypotheses regarding a population parameter, we may

be interested in hypotheses about the structure of the underlying popula-

tion. For instance, in the heights example we saw previously in Chapter 3,

we assumed the data were sampled from a normally distributed population.

However, we might be interested in formally testing this assumption using

the data in our sample. This is a non-parametric test since there are no

specific assumptions on the distributional form of the data.
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The χ2 goodness-of-fit test is appropriate only for testing hypothesis regard-

ing the distribution of discrete random variables (there is an analogous ver-

sion for continuous variable in the form of the Kolmogorov-Smirnov goodness-

of-fit test). The test compares the observed frequencies to what we would

expect to see, assuming that the probability model specified by the null dis-

tribution is true. The test statistic is a measure of the distance between the

observed and expected frequencies. The value of this statistic is then com-

pared with the critical region for the test (which is constructed from the null

distribution).

Suppose we observe a sample of size n and we obtain the frequencies for m

different values or classes (that is, we count how many of the n observations

fall into each class). The test statistic is

χ2 =
m
∑

i=1

(Oi − Ei)
2

Ei

where Oi and Ei are the observed and expected frequencies for the ith class

respectively. The closer the observed frequencies are to the expected fre-

quencies for each class, the less likely we are to reject H0. If there are

discrepancies between the data and the expected frequencies under H0, then

χ2 will be large and we are more likely to reject the null.

The degrees of freedom for this test is

df = m− 1− p.e.

where p.e. is the number of parameters estimated in order to calculate the

expected frequencies Ei. The critical region of the test consists of large values

of χ2, as this indicates discrepancies between the data and the hypothesized

model. For this test, the p-value is the probability that a chi-square distri-

bution with df degrees of freedom will take a value larger than or equal to

the calculated value of χ2.
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Example: A retrospective research studying the temporal distribution of

the outbreaks of major flu epidemics over the period 1500 to 1931 is per-

formed, counting the number of outbreaks each year. The random variable

of interest counts the number of outbreaks occurring in each year of that 432

year period. The observed frequencies indicate, for instance, that there were

223 years with 0 outbreaks of major flu epidemics.

The null hypothesis is that this data is a realisation of a Poisson distributed

random variable, X (i.e. the random variable has a Poisson distribution).

We decided on this distribution for the null hypothesis since it is a good

model for random events occurring at a constant rate. In this distribution

P (X = x) =
e−λλx

x
,

where x denotes the number of outbreaks in any one year, and λ the mean

number of outbreaks per year (i.e. total outbreaks / total number of years).

In order to calculate the expected frequencies under the null hypothesis,

we need to estimate the parameter λ of the Poisson distribution for this

data. Using the sample mean, we estimate its value to be 0.6921. The

expected values are found by plugging this value for λ into the probability

mass function for the Poisson distribution for each category, and multiplying

these probabilities by the total number of events (432). The observed and

expected frequencies are

X 0 1 2 3 4 ≥ 5

observed 223 142 48 15 4 0

expected 216.23 149.65 51.79 11.95 2.07 0.28

The agreement between the data and the values produced by the model is

quite good, and the value of χ2 is 0.1047, on 6 - 1 - 1 = 4 degrees of freedom

(since we had to estimate one parameter - the mean of the Poisson distribu-

tion), and the p-value is 0.99. That is, we would be almost certainly wrong

to reject the null hypothesis of a Poisson model for these data.
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5.2.3 Testing for Independence

We now consider how to analyse statistically whether two or more categorical

variables are independent of each other.

One way of representing the relationship between two categorical variables

is via a two-way table. Let one of the variables have r levels and the other

have c levels. Then, a two-way table is a table with r rows and c columns,

with each cell containing the observed number of objects falling into that

crossed category. Let Nij denote the number of observations in the ith row

and jth column; let i = 1, . . . , r; j = 1, . . . , c, Cj denote the column totals; Ri

denote the row totals; and n the total sample size. Then, the general form

of a two-way table is

Column

Row 1 2 . . . j . . . c Total

1 N11 N12 . . . N1j . . . N1c R1

2 N21 N22 . . . N2j . . . N2c R2

...
...

...
...

...
...

i Ni1 Ni2 . . . Nij . . . Nic Ri

...
...

...
...

...
...

r Nr1 Nr2 . . . Nrj . . . Nrc Rr

Total C1 C2 . . . Cj . . . Cc n

We are interested in testing whether the row and column variables are inde-

pendent: the null hypothesis is that there is no relationship between the row

and column classifications. There are two possible scenarios that might lead

us to test this hypothesis. In the first, we have a sample of n units drawn

from a population. We believe that each unit in the sample can be classified

according to two categorical variables. In this case, the variables have a sym-

metric relationship; this is not the case in the second scenario, in which there

are c populations, and sample of sizes C1, . . . , Cc are drawn from each. Each

unit is then classified according to a categorical variable with r possible levels.

The difference between these two situations lies in how the data is collected.

In the first case, the researcher sets the sample size, n, and then classifies
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each unit into one of the rc cells. In the second case, the column totals are

the sample sizes selected at the design stage. The first situation is known as

multinomial sampling, and the second as product multinomial sampling. Al-

though these are two completely separate scenarios, the χ2 testing procedure

described below is the same for both.

The statistic that tests the null hypothesis in an r × c table compares the

observed counts with the expected counts, the latter being calculated under

the assumption that the null hypothesis is true. The expected count in the

ijth cell of the table is given by

Eij =
RiCj

n
,

and the χ2 test statistic is

χ2 =
∑

ij

(Nij − Eij)
2

Eij

.

This statistic has a χ2 distribution on (r−1)(c−1) degrees of freedom. There-

fore, we reject the null hypothesis that the rows and columns are independent

if the observed value of the χ2 statistic is greater than χ2
α,(r−1)(c−1), the (1−α)

quantile of the chi-squared distribution with (r−1)(c−1) degrees of freedom.

Note that these results are based on approximations, and thus there are

certain important assumptions that need to be satisfied in order to use this

test. To apply this theory, we must assume that we have a sufficiently large

sample such that

1. The smallest expected count is 1 or more.

2. At least 80% of the cells have an expected count of 5 or more.

Example: It was thought that there might be a genetic predisposition to

myopia and a case-control study is carried out to find out whether there

is any evidence to suggest genetic association with the incidence of severe

myopia. The following table shows the genotypic distribution among the 2

groups.
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Meir

Genotype Myopes Normal Total

AA 97 62 159

AG 91 56 147

GG 20 13 33

Total 208 131 339

We are interested in testing whether the genotypes of the Meir gene is associ-

ated with the onset of severe myopia. In doing so, we find the χ2 test statistic

to be 0.0347, which we compare to a χ2 distribution with (3−1)×(2−1) = 2

degrees of freedom. This produces a p-value of 0.983, presenting insufficient

evidence to suggest any association between the Meir gene and the onset of

severe myopia.

5.3 Additional Aspects of Categorical Anal-

ysis and χ2

5.3.1 Equality of Variance

Previously, we have seen that particular forms of parametric tests for more

than one group assume homogeneity of variances between the groups. We are

able to test the assumption of variance equality by the use of the F-test. If

two independent random variables, X1 and X2, each having χ2 distributions

on ν1 and ν2 degrees of freedom respectively, then the random variable

F =
X1/ν1
X2/ν2

has an F-distribution with parameters ν1 and ν2, denoted F (ν1, ν2).

It can be shown that if X1, . . . , Xn is a random sample from a N(µ, σ2)

population.
(n− 1)S2

σ2
∼ χ2

n−1 ,

where S2 denotes the unbiased sample variance. Therefore, to test the hy-
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pothesis

H0 :
σ2
1

σ2
2

= 1

against a one- or two-sided alternative, we use the statistic

F =
S2
1

S2
2

where S2
i is the unbiased sample variance estimate for sample i, i = 1, 2. From

the result stated above, the null distribution of the test if F (n1 − 1, n2 − 1),

and this can be used to construct a rejection region appropriate to the form

of the alternative hypothesis. Most statistical packages will perform this test

although it is important to note that this result depends on the assumption

that each sample is normally distributed and independent.

5.3.2 Odds Ratio

Consider a case-control study, classified by the presence or absence of a qual-

itative factor (i.e. smoker or non-smoker) and a dichotomous disease status

(i.e. presence or absence of lung cancer), and consider the data in the fol-

lowing tabular form:

Lung Cancer (+) Lung Cancer (-)

Smoking (+) n1 n2 n1 + n2

Smoking (-) n3 n4 n3 + n4

n1 + n3 n2 + n4 n

Association between the disease status and the qualitative factor can be

determined through the use of a χ2 test of independence, provided the as-

sumptions are satisfied. We are also interested in the effect of the factor, and

the ratio of odds, defined as

OR =
n1/n3

n2/n4

=
n1/n2

n3/n4

=
n1n4

n2n3

is a common measure used.

The odds ratio is usually reported together with the confidence interval, as

a representation of the statistical significance of the odds ratio. Obtaining
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the confidence interval involves calculating the variance of the odds ratio and

obtaining the variance of the odds ratio directly is non-trivial. However, the

variance may be easily obtained through a logarithmic transformation of the

odds ratio, as

Var(logOR) =
1

n1

+
1

n2

+
1

n3

+
1

n4

.

It is therefore easier to obtain the confidence interval for the log odds ratio,

and by taking exponentials, obtain the confidence intervals of the odds ratio.

Example: Numbers of children with malignant disease and their controls

whose mothers (retrospectively) reported influenza during the relevant preg-

nancy (Oxford survey of Childhood Cancers)

Influenza No Influenza

Cancer 96 8766 8862

No Cancer 64 8798 8862

By performing a χ2 test of independence, we obtain χ2
1 = 6.061, yielding

a p-value of 0.0138, suggesting that association exists between the onset

of cancer and the presence of influenza. The odds ratio is 96/8766
64/8798

= 1.51,

suggesting that children whose mothers have influenza during pregnancy is

1.5 times more likely than children whose mothers do not have influenza

during pregnancy to suffer from malignant cancer. The variance for the log

odds ratio is

Var(logOR) =
1

96
+

1

8766
+

1

64
+

1

8798
= (0.16208)2

and the 95% confidence interval for the log odds ratio is

(

log(1.51)− 1.96× 0.162, log(1.51) + 1.96× 0.162
)

= (0.09, 0.73)

yielding the 95% confidence interval for the odds ratio as (1.10, 2.07).
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Chapter 6

Linear Regression

Regression is a tool for exploring relationships between variables and the most

common form of statistical analysis for the case in which both the response

and the predictors are continuous is known as linear regression. Linear

regression explores relationships that are readily described by straight lines,

or their generalisations to many dimensions. A surprisingly large number of

problems can be analysed using techniques of linear regression, and even more

can be analysed by means of transformations of original variables that result

in linear relationships among the transformed variables. Linear regression

is a parametric procedure, as the response variable is assumed to follow a

normal distribution. A complete description of linear regression is beyond

the scope of this course, however sufficient details are given to have a basic

understanding of the concepts behind linear regression, and the statistical

extensions that are possible.

6.1 Linear Model

6.1.1 Simple Linear Regression

In simple linear regression, we test for a linear relationship between two

variables, one of which is defined as the explanatory variable, predictor or the

regressor (x), and the other defined as the dependent variable, response or

the regressand (y). Linear regression models the linear relationship between
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the response (y) and the predictor (x) as

E(y|x) = α + βx,

where α denotes the intercept parameter and β the slope parameter. Statis-

tical techniques such as maximum likelihood, or numerical techniques such

as least squares, are used to estimate these parameters and provide their

standard errors. By testing the hypothesis that β = 0, we can test whether

y is linearly related to x.

Another manner of looking at the above relationship is

y = α + βx+ ǫ

for an error ǫ which is normally distributed with mean 0 and variance σ2.

One of the crucial assumption of linear regression is homoscedasticity, or con-

stant variance for ǫ for all cases.

Linear regression is performed by all statistical software packages, with most

giving the estimate of the regressions parameters and their standard errors,

the test statistic (t) for testing the hypothesis of no relationship between the

response and the predictors, and the p-value of the test.

6.1.2 Multiple Regression

Suppose there are p numeric explanatory variables x1, . . . , xp, a linear model

postulates

Ey = α + β1x1 + · · ·+ βpxp

or

y = α + β1x1 + · · ·+ βpxp + ǫ

for ǫ ∼ N(0, σ2).

In general, each predictor contributes a single term in the model formula,

and a single term may contribute more than one coefficient to the fit.
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Example: Consider the environmental study of the concentration of Ozone

in New York that measured four variables ozone, solar radiation, temperature

and wind speed for 111 consecutive days from Chambers and Hastie, 1992.

The diagram shows a scatter plot of ozone against temperature. From the

temperature

oz
on

e

60 70 80 90

1
2

3
4

5

Figure 6.1: Scatterplot of ozone against temperature.

scatterplot, we hypothesise a linear relationship between temperature and

ozone concentration. We choose ozone as the response and temperature as

the single predictor. The choice of response and predictor variables is driven

by the subject matter in which the data arises, rather than statistical con-

siderations.

After fitting the regression model, we obtain the value of the intercept as -

2.226 and the coefficient for temperature to be 0.070, thus yielding the model

Ozone = −2.226 + 0.070× temperature + ǫ

An interpretation of the model will be that a one degree increase in tem-

perature will increase the ozone concentration by 0.07. Note however that a

common mistake in interpreting the result often arises when the model is ex-

trapolated to values not within the range of the regressors. In this example,
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Coefficientsa

-2.226 .461 -4.824 .000

7.036E-02 .006 .753 11.951 .000

(Constant)

TEMP

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardi

zed

Coefficien

ts

t Sig.

Dependent Variable: OZONEa.

ANOVAb

49.462 1 49.462 142.828 .000a

37.747 109 .346

87.209 110

Regression

Residual

Total

Model

1

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), TEMPa.

Dependent Variable: OZONEb.

Figure 6.2: Linear regression of ozone concentration against temperature,

output from SPSS.

it will be erroneous to state that at zero temperature (temperature = 0), the

ozone concentration is -2.226! Care must be taken that linear regressional

models are not used for extrapolation beyond the range of the regressors, in

this case the range of the temperature is between 57 degrees and 97 degrees

Fahrenheit.

6.1.3 Prediction vs. Explanation

There are two main reasons for wishing to construct a linear relationship

between the predictors and the response:

1. To explain our data.

2. To predict the values of y at a new value of the xi’s.
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Note that these are considerably different objectives. An explanation needs

to be intelligible and should generally be as simple as possible (while cap-

turing the essence of the data), whereas a prediction can be complicated as

accuracy is the only criterion.

Therefore, the objective should always be clear before a model is constructed,

and the choice and number of predictors included in the model should reflect

the required objective.

6.2 Transformations

There are many reasons to transform data as part of a regression analysis:

• to achieve linearity.

• to achieve homogeneity of variance (constant variance) about the re-

gression equation.

• to achieve normality or symmetry about the regression equation.

A transformation that achieves one of these goals often ends up achieving

all three. This sometimes happens because when a data have a multivariate

normal distribution, the linearity of the regression and homogeneity follow

automatically. So anything that makes a set of data look multivariate nor-

mal in one respect often makes it look multivariate normal in other respects.

However, it is not necessary that data follow a multivariate normal distribu-

tion for multiple regression to be valid. For standard tests and confidence

intervals to be reliable, the response should be close to normally distributed

with constant variance about their predicted values. The values of the pre-

dictors need not be a random sample from any distribution. They may have

any arbitrary joint distribution without affecting the validity of fitting re-

gression models.

Here are some data where the values of both variables were obtained by sam-

pling. They are the homocysteine (HCY) and folate (as measured by CLC)

levels for a sample of individuals. Both variables are skewed to the right
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and the joint distribution does not have an elliptical shape. If a straight line

was fitted to the data with HCY as a response, the variability about the line

would be much greater for smaller values of folate and there is a suggestion

that the drop in HCY with increasing folate is steeper at lower folate levels.

When logarithmic transformations are applied to both variables, the distri-

butions of the individual variables are less skewed. A straight line seems like

a reasonable candidate for describing the association between the variables

and the variances appear to be roughly constant about the line.

Often both variables will not need to be transformed and, even when two

transformations are necessary, they may not be the same. When only one

variable needs to be transformed in a simple linear regression, there is an

issue of whether the transformation should be applied to the response or the

predictor. Consider a data set showing a quadratic effect between y and x.

There are two ways of removing the non-linearity by transforming the data.

One is to square the predictor while the other is to take the square root of

the response. The general rule is to transform the response variable (y) to

achieve homoscedasticity (constant variance), before transforming the pre-

dictors to achieve linearity.
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6.3 Simple Regression Diagnostics

There are various plots which are obtained whenever a linear model is fitted,

and it is essential that these plots are analysed as they reveal the adequacy

and the appropriateness of the fitted model. We first define the residuals

as the difference between what is fitted and what is observed, defined as

ri = yi − ŷi

where yi and ŷi denote the observed and the fitted response for the ith ob-

servation respectively.

Different data points contribute differently to the fitted model, with data

points at either end of the predictors having a greater influence to the fitted

model. Every point influences the fitted line by pulling the fitted line toward

itself, and points at either ends have greater tendencies to ’slant’ the fitted

line. This measure of influence is known statistically as leverage. As the

calculation of leverage is mathematically tedious, the precise mathematical

representation will not be included in this course, however interested readers

are pointed to pg. 774 of Classical Inference and the Linear Model by Stuart,

Ord and Arnold (1999).

The residuals tell us whether a point has been explained well by the model,

but if it has not, they do not tell us what the size of the effect on the fitted

coefficients of omitting the point might be. A badly fitted point in the middle

of the design space will have much less effect on the predictions than one at

the edge of the design space (c.f. leverage).

Cook (1977) proposed a measure that combines both the effect of leverage

and that of being badly fitted, and the Cook’s statistic is proportional to the

product of the leverage and the squared residuals. Although several small

modifications have been proposed, Cook’s statistic is still one of the key mea-

sure of the degree of influence of each point. In general, we will take note of

leverages with two or three times the value of p/n, where p is the number of

fitted parameters and n is the number of data points.
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The following four plots of different types of residuals, leverage and Cook’s

distance are often produced when considering regression diagnostics:

1. Plot residuals against the index of the dataset.

This will show up observations with large residuals, implying possible

outliers. It can also show effects from the time ordering of the mea-

surements (Fig. 6.3).
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Figure 6.3: (a) Plot of residuals against the index, identifying possible out-

liers at points 54 and 81. (b) Plot of residuals against the index, identifying

possible effects from the ordering of the measurements as the residuals in-

crease as the indices increase.

2. Plot residuals against x (if one-dimensional), or any regressor.

This can show up patterns in the residuals which indicate non-linearity:

for example, that the relationship is with x2 rather than with x. It can

also demonstrate that a potential extra regressor will be useful (Fig.

6.4).

3. Plot residuals against the fitted values of the y.

This can show up heteroscedasticity, where the variance is not constant

over the whole range. This plot is done against ŷ rather than y as the

residuals are correlated with y but not with ŷ (Fig. 6.5).

4. Leverage plots against index will show which points may have large

influence.

Such points may or not be outliers and plotting Cook’s statistic will

draw attention to points which seem to be influential (Fig. 6.6).
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Figure 6.4: Plot of residuals against the regressor x, identifying possi-

ble quadratic structure in the residuals, suggesting that the relationship is

quadratic rather than linear.

Caution: If there is more than one outlier, these methods may fail to show

any of them, as we only consider the effect of omitting one point at a time.
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Figure 6.5: Plot of residuals against the fitted y, identifying a trend of in-

creasing variance suggesting heteroscedasticity.
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Figure 6.6: Plot of response y against regressor x, with corresponding plot

of leverages against index.
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